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Autonomous robotic systems must operate safely and reliably in environments that involve

significant uncertainty, including unmodeled dynamics, noisy sensor measurements, unpredictable

obstacles, and learned representations. This dissertation develops a collection of methods that

enable safe, stable, and certifiable control for such systems by integrating principles from control

theory, robust and distributionally robust optimization, and learning-based techniques.

First, robust and probabilistic control synthesis methods are introduced that extend control

barrier functions (CBFs) and control Lyapunov functions (CLFs) to handle bounded or stochastic

model uncertainty and imperfect perception. These methods enable real-time safe navigation for
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mobile robots in unknown environments using onboard sensor data.

Second, a distributionally robust control framework is developed to address uncertainty

in obstacle motion, localization, and sensor noise. Leveraging tools from distributionally robust

optimization (DRO), the proposed methods ensure safety under worst-case distributional shifts.

The framework is validated through sensor-based navigation and manipulation tasks in dynamic

and cluttered environments.

Third, a set of methods is proposed for certifying the stability of learned control policies,

including those trained via reinforcement learning. This includes distributionally robust Lyapunov

function formulations that enable stability guarantees under unknown model perturbations using

only limited uncertainty samples. Moreover, a generalized Lyapunov framework is proposed for

certifying the stability of optimal control and reinforcement learning policies. By augmenting

value functions with neural residual terms and enforcing a multi-step Lyapunov decrease condition,

the framework enables practical verification of learned controllers and supports joint training of

policies and stability certificates.

Together, these contributions advance the theoretical and algorithmic foundations of

robust, interpretable, and adaptive robot autonomy, enabling reliable and safe operation of

autonomous systems in complex and uncertain real-world environments.
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Chapter 1

Introduction

1.1 Motivation

Enabling safe and reliable robotic autonomy remains a fundamental challenge at the

intersection of robotics, control, and machine learning. Robots are increasingly being deployed

in unstructured and dynamic environments such as autonomous driving, warehouse automation,

surgical assistance, household tasks, and planetary exploration. In these settings, it is critical that

robots operate reliably and robustly under uncertainty. Success in this area would enable robots

to assist or even replace humans in high-risk or complex tasks, expanding the scope and impact

of automation.

Unlike humans, who act based on intuition, experience, and learned heuristics, robots can

systematically integrate multimodal sensor data, leverage prior knowledge of their own dynamics,

and reason computationally about the consequences of their actions. This capacity opens up

exciting possibilities for developing autonomous systems that not only achieve high performance

but also offer interpretability, robustness, and formal guarantees. The long-term vision of my

research is to develop autonomous robots that can match and ultimately exceed human-level

agility, safety, and decision-making reliability in complex and uncertain environments.

However, realizing this vision requires addressing several core technical challenges.

Robots must react in real time to unexpected changes in their surroundings, while accounting

for uncertainty arising from inaccurate models, noisy sensors, imperfect localization, and even
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learned components such as neural network-based dynamics or perception modules. These forms

of uncertainty make it difficult to synthesize control policies that are both high-performing and

provably safe or stable, particularly in dynamic environments or safety-critical domains.

While classical control methods offer strong theoretical guarantees, such as those based

on optimal control, control barrier functions (CBFs), and control Lyapunov functions (CLFs),

they often assume perfect knowledge of dynamics and environmental structure. This limits

their ability to scale or generalize to real-world variability. In contrast, learning-based methods,

such as reinforcement learning, have demonstrated remarkable empirical success in complex

and high-dimensional tasks. Yet, they often lack the theoretical guarantees and interpretability

required for deployment in high-stakes settings, where reliability, safety, and accountability are

non-negotiable.

This thesis aims to bridge these paradigms by developing a unified framework for safe,

robust, and adaptive robot control under uncertainty. The approach integrates insights from

control theory, robust and distributionally robust optimization, and machine learning to produce

control strategies that are formally grounded, uncertainty-aware, and scalable to unknown

environments. By combining classical structure with modern learning techniques, the resulting

algorithms bring us closer to the goal of certifiable autonomy in real-world robotic systems.

1.2 Problem Statement

The central goal of this thesis is to develop safe, stable, and reliable control policies

for robotic systems operating in dynamic and uncertain environments. This involves unifying

control-theoretic formulations with modern learning-based approaches to achieve both real-time

decision-making and performance guarantees.

The first objective is to extend classical CBFs and CLFs to handle model inaccuracies,

unknown disturbances, and sensor-induced uncertainty. In particular, we aim to enable safe and

stabilizing control synthesis for mobile robots with complex geometries navigating in unknown
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environments using only onboard sensors.

Second, we address the limitations of worst-case robust or probabilistic methods by

developing a distributionally robust framework that accounts for ambiguity in the data-generating

distribution. Using tools from distributionally robust optimization (DRO), we aim to quantify

uncertainty in obstacle motion, localization, and sensor readings, and synthesize control policies

that ensure safety even with distributional shifts.

Third, we seek to bridge the gap between classical control theory and learning-based

control by developing scalable methods for analyzing and certifying the stability of neural control

policies, including those trained via reinforcement learning (RL). We formulate a generalized

Lyapunov stability framework that augments value functions with neural residuals and enforces

multi-step decrease conditions. This enables not only post-hoc certification but also the joint

training of control policies and Lyapunov certificates.

Together, these objectives advance the frontier of safe and reliable robotic autonomy by

enabling real-time decision-making with guarantees and interpretability, supporting deployment

in complex, real-world environments.

1.3 Related Work

This section provides a high-level overview of related work relevant to the core contri-

butions of this thesis. The discussion is organized around three key themes that shaped the

trajectory of my Ph.D. research: safe control synthesis, distributionally robust optimization, and

neural stability certification. More detailed comparisons to closely related methods are deferred

to the corresponding technical chapters.

Safe Control:

In the early 2000s, barrier certificates were introduced as formal tools to verify safety for

nonlinear and hybrid systems [120, 121]. These methods established conditions under which a

system would remain within a safe set indefinitely, without requiring complete knowledge of
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the control law. Building upon this foundation, control barrier functions (CBFs) were proposed

as a synthesis tool for safety-critical control of nonlinear systems [144], offering a constructive

method to design controllers that enforce forward invariance of safe sets.

A key breakthrough came from the observation that, for control-affine systems, both

control Lyapunov function (CLF) and CBF conditions are affine in the control input. This structure

allows safe and stabilizing controllers to be synthesized via real-time quadratic programming

(QP) [7,8]. The resulting CLF-CBF QP framework has been widely adopted due to its modularity

and efficiency, and has demonstrated success in applications such as adaptive cruise control,

robotic locomotion, and multi-robot coordination.

While the CLF-CBF QP formulation provides formal guarantees for deterministic systems,

many robotics applications must contend with model uncertainty, imperfect state estimation,

and noisy or incomplete sensory inputs. To address these challenges, robust and probabilistic

extensions of CLF-CBF QPs have been proposed. These include formulations that account for

bounded model uncertainty [46], probabilistic safety guarantees under stochastic disturbances

[40], and observer-based approaches that incorporate state estimation uncertainty [37, 143].

Recent work has also focused on learning-based and sensor-driven synthesis of barrier

functions, enabling robots to infer safety constraints from partial observations and data-driven

priors. For example, CBFs have been learned from range data using support vector machines

[134], synthesized from RGB-D and LiDAR inputs for vision-based navigation [1, 77], and

constructed through differentiable pipelines for locomotion and obstacle avoidance tasks [95,154].

These methods aim to bridge the gap between formal control-theoretic safety guarantees and the

uncertainty and variability present in real-world environments. Much of this progress has evolved

concurrently with the development of this thesis, reflecting a broader shift toward combining

perception and learning with certified safety methods.

In parallel, there has been a surge in robust and probabilistic extensions of control barrier

functions to explicitly handle uncertainty in the system model, external disturbances, and sensor

noise. Jankovic [72] and Eman et al. [45] formulate robust CBF conditions using worst-case

4



disturbance bounds and convex hulls, respectively. Nguyen and Sreenath [113] introduce a robust

CLF-CBF QP that incorporates uncertainty into both safety and stability constraints. Clark [27]

addresses stochastic systems with partial observability and derives sufficient conditions to ensure

average-case safety.

Beyond worst-case guarantees, risk-sensitive formulations have been explored. Ahmadi

et al. [2] propose a CVaR-based CBF framework to ensure safety with high probability under

stochastic uncertainty. Relatedly, model predictive control (MPC) approaches have been proposed

that embed safety constraints informed by probabilistic models. For instance, Hewing et al. [68]

combine a nominal model with a Gaussian Process residual to account for modeling error, while

Alcan and Kyrki [4] and Hassan et al. [6] use differential dynamic programming to embed safety

constraints into trajectory optimization.

Other lines of work explore robust safety under disturbances and estimation errors using

input-to-state safety (ISSf) concepts. Romdlony and Jayawardhana [127] introduce ISSf to

characterize safety under bounded disturbances, which was later used by Kolathaya et al. [80] and

Alan et al. [3] to enlarge safe sets and reduce conservatism. Measurement-robust formulations

have also emerged, such as the work of Cosner et al. [29], which explicitly incorporates state

estimation uncertainty in CBF design and demonstrates safety on physical systems.

Distributionally robust optimization.

Distributionally robust optimization (DRO) has emerged as a powerful framework to

address uncertainty in optimization problems, especially in scenarios with limited or noisy data.

Unlike classical robust methods that consider worst-case uncertainty, DRO explicitly models

ambiguity in the distribution of uncertain parameters. To capture the potential discrepancy

between empirical and true distributions, researchers have introduced several types of ambiguity

sets, including moment-based sets [139], Kullback–Leibler divergence balls [74], and Wasserstein

balls [47, 71, 147]. These formulations have been widely adopted in machine learning [88,

130], uncertainty quantification [20], and increasingly, in control theory [18, 19, 89, 150] and
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robotics [30, 124, 128].

Several works have also demonstrated the utility of DRO in safe planning and decision

making under uncertainty. Ren and Majumdar [124] introduced a DRO-based reinforcement

learning approach that trains policies against adversarial environments generated from a learned

generative model. Hakobyan and Yang [56] proposed a distributionally robust risk map

formulation for mobile robot safety, casting the resulting infinite-dimensional problem into a

tractable semidefinite program. Lathrop et al. [84] developed a Wasserstein-safe RRT variant

with finite-sample safety guarantees. Similarly, Summers [136] proposed a moment-based

ambiguity formulation for motion planning under uncertainty. In the control domain, Aolaritei

et al. [12] introduced Wasserstein tube MPC, enhancing robustness by constructing trajectory

tubes around a nominal plan using Wasserstein balls. Bahari et al.[82] proposed a reinforcement

learning-based DRO-MPC formulation, enabling robust control for stochastic systems. Finally,

Hakobyan and Yang [57] developed a DRO variant of differential dynamic programming by

leveraging Kantorovich duality to retain tractability.

A related line of research to our work is the application of conformal prediction in robot

navigation tasks. Conformal prediction [132,157] is a statistical tool for uncertainty quantification

that provides valid prediction regions with a user-specified risk tolerance, making it particularly

useful for ensuring safety in dynamic environments. Several recent works have explored the

integration of conformal prediction into motion planning and control frameworks. Lindemann et

al. [94] used conformal prediction to obtain prediction regions for a model predictive controller.

Yang et al. [152] employed conformal prediction to quantify state estimation uncertainty and

design a robust CBF controller based on the estimated uncertainty. An adaptive conformal

prediction algorithm was developed by [42] to dynamically quantify prediction uncertainty and

plan probabilistically safe paths around dynamic agents.
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Neural Lyapunov Functions and Stability-Certified Policies:

Lyapunov theory provides a principled foundation for stabilizing control design in

nonlinear systems. Classical methods for controller synthesis rely on constructing control

Lyapunov functions (CLFs) that certify asymptotic stability. For linear systems, Lyapunov-stable

controllers can be efficiently synthesized using linear matrix inequalities (LMIs) and linear

quadratic regulator (LQR) techniques [10]. For polynomial systems, sum-of-squares (SOS)

programming enables joint synthesis of controllers and certificates [73]. However, SOS-based

approaches are limited in scalability and expressivity: not all valid Lyapunov functions are

SOS-representable [69], and the computational cost grows rapidly with system dimension and

polynomial degree.

To overcome these limitations, recent work has explored neural networks as flexible

function approximators for Lyapunov functions and stabilizing controllers. Early efforts include

learning Lyapunov functions to characterize regions of attraction [125], and jointly synthesizing

controllers and certificates with formal verification using satisfiability modulo theories (SMT)[24,

158]. Subsequent works incorporated Lyapunov structure into network architectures[17, 50],

or used optimization-based verification tools such as mixed-integer programming [33] and

α, β-CROWN [142, 151] to ensure stability guarantees. Extensions to safety-critical control

problems have been explored via joint Lyapunov-barrier functions [36] and distributionally robust

Lyapunov formulations under model uncertainty [103]. See also [35] for a recent survey.

The relationship between reinforcement learning (RL) and Lyapunov stability has also

received increasing attention. Early formulations focused on safe policy learning via Lyapunov

constraints [26, 66, 118], including model-based RL methods that leverage Lyapunov verification

to ensure safe exploration [15]. More recent works seek to integrate Lyapunov conditions

directly into the learning pipeline, such as through regularization [66] and demonstration-driven

training [109]. These methods aim to bridge the gap between classical control theory and modern

policy learning by encoding stability guarantees into learned decision-making systems.
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1.4 Outline and Contributions

The overarching goal of this thesis is to develop principled methods for safe and stable

control of nonlinear robotic systems operating under uncertainty. This involves addressing

three core challenges: (1) synthesizing safe control policies for robots in unknown and dynamic

environments, (2) ensuring safety using onboard sensing in the presence of uncertainty and

potential distributional shift, and (3) enabling stability guarantees for learned neural control

policies.

To address these challenges, this thesis introduces a set of novel formulations and algo-

rithms grounded in control theory, optimization, and machine learning. The work emphasizes the

integration of formal guarantees, including Lyapunov stability, barrier safety, and distributionally

robust optimization, with scalable learning-based methods. Below is a brief overview of the

chapters.

Chapter 2:

This chapter provides the foundational background for the thesis, reviewing key concepts in

Lyapunov theory, control barrier functions, distributionally robust optimization, and reinforcement

learning. These tools form the theoretical basis for the control formulations and learning

algorithms developed in subsequent chapters.

Chapter 3:

This chapter develops control synthesis methods that enable mobile robots to navigate

safely in unknown environments using onboard sensing. The first contribution is a formulation

for learning CBFs incrementally from sensor data with memory, allowing robots to maintain

safety. The second contribution presents a convex reformulation of the control synthesis problem

under bounded or stochastic uncertainty in both robot dynamics and barrier constraints. These

formulations bridge formal safety guarantees with real-time implementation, enabling certifiably

safe control in practice. The chapter emphasizes the integration of sensing, learning, and
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optimization to handle uncertainty in a structured and theoretically sound manner.

Chapter 4:

This chapter develops methods for synthesizing safe controllers under distributional

uncertainty by leveraging tools from distributionally robust optimization (DRO). Specifically,

it integrates control barrier functions (CBFs) with Wasserstein ambiguity sets to provide

probabilistic safety guarantees from limited samples. The chapter introduces distributionally

robust safety filters that account for various real-world uncertainty sources—such as sensor noise,

localization drift, and imperfect neural representations—using only onboard observations. These

methods are validated on both ground mobile robots and 6-DOF manipulators, where learned

signed distance functions (SDFs) and configuration space distance functions (CDFs) enable

geometry-aware control in cluttered environments.

Chapter 5:

This chapter presents novel formulations for learning Lyapunov functions and stabilizing

control policies in the presence of model uncertainty. We begin by introducing the concept of

distributionally robust Lyapunov functions (DR-LFs), which certify stability using only sampled

disturbances, without requiring known uncertainty bounds. To construct these certificates, we

develop both sum-of-squares and neural network-based formulations that enforce Lyapunov condi-

tions over Wasserstein ambiguity sets, providing high-confidence guarantees under distributional

uncertainty. The approach is further extended to support the joint synthesis of stabilizing neural

controllers and DR-LFs, enabling certifiable control of uncertain nonlinear systems. Next, we

present a new formulation for certifying the stability of control policies derived from reinforcement

learning and optimal control. We leverage the concept of a generalized Lyapunov function, which

relaxes the classical step-wise decrease condition to a multi-step, weighted criterion, enabling

certification even when traditional Lyapunov functions fail. By augmenting value functions with

residual terms and learning state-dependent weights, the proposed method supports both post

hoc stability certification and joint training of neural controllers and certificates.
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Chapter 6:

This chapter concludes the thesis by highlighting its central contributions to certifiable

robot autonomy under uncertainty and outlining promising directions for future research. The

work develops robust, probabilistic, and distributionally robust formulations of barrier and

Lyapunov functions, demonstrating their effectiveness in enabling safe and stable control of

mobile robots and manipulators in uncertain, dynamic environments. It shows how rigorous

control-theoretic guarantees can be combined with neural representations and learning-based

methods to handle compounded uncertainties and to certify the stability of reinforcement learning

policies. At the same time, it acknowledges open challenges such as feasibility and conservatism

in barrier formulations, scalability to high-dimensional systems, and broader notions of safety

beyond collision avoidance. Looking ahead, the chapter charts three directions: unifying

optimality and stability in learning-based control, extending safety to open-world and contact-rich

settings, and developing scalable whole-body task and motion planning frameworks. Together,

these advances and open problems point toward a future where robots operate not only with

dexterity and agility, but also with reliability, interpretability, and potentially formal guarantees.
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Chapter 2

Background

The goal of this chapter is to introduce foundational tools used throughout the thesis for

safe and stable control of nonlinear robotic systems operating under uncertainty. In real-world

robotics, safety refers to the ability of a system to avoid undesirable outcomes (such as collisions

or violations of physical constraints), while stability ensures that the system’s behavior remains

well-behaved over time, ideally converging to a desired configuration or trajectory. These

properties are crucial for deploying robotic systems in dynamic, unknown, and high-stakes

environments.

We begin by reviewing classical notions of Lyapunov stability and control Lyapunov

functions (CLFs), which formalize liveness through convergence guarantees. CLFs provide a

constructive way to synthesize stabilizing controllers, especially for nonlinear and control-affine

systems, by ensuring that a scalar-valued function decreases along system trajectories. Next, we

discuss control barrier functions (CBFs), which encode safety by enforcing forward invariance

of constraint sets—ensuring that, once a system enters a safe region, it remains inside for all

future time. Together, CLFs and CBFs offer a unified framework for synthesizing controllers that

guarantee both safety and stability through real-time optimization techniques, often formulated

as quadratic programs.

To extend these guarantees under uncertainty, we introduce techniques from distribu-

tionally robust optimization (DRO). These tools are particularly useful when only limited or
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noisy data is available to characterize the environment, dynamics, or sensing uncertainties. DRO

provides a way to make worst-case-optimal decisions by optimizing over an ambiguity set of

possible distributions, enabling safety- and performance-critical decisions beyond empirical

samples.

Finally, we provide a brief overview of optimal control and reinforcement learning (RL),

with an emphasis on their connections to Lyapunov stability and safety-critical control. We focus

particularly on model-based and constrained formulations that intersect with control-theoretic

tools, highlighting their important roles in planning, learning, and decision-making.

Notations

Throughout the thesis, we adopt the following notations:

The sets of real, non-negative real, and natural numbers are denoted by R, R≥0, and

N, respectively. For N ∈ N, we write [N ] := {1, 2, . . . N}. We denote the distribution and

expectation of a random variable Y by P and EP(Y ), respectively. The interior and boundary of

a set C ⊂ Rn are denoted by Int(C) and ∂C. We denote by In ∈ Rn×n the identity matrix. For a

vector x, the notation |x| represents its element-wise absolute value, while ∥x∥1, ∥x∥, and ∥x∥∞

denote its L1, L2, and L∞ norms, respectively. For a matrix X, we use ∥X∥ to denote the spectral

norm. We use vec(X) ∈ Rnm to denote the vectorization of X ∈ Rn×m, obtained by stacking its

columns. We use 0n and 0n×n to denote the zero vector and matrix of size n and n× n.

We denote by∇ the gradient and LfV = ∇V · f the Lie derivative of a differentiable func-

tion V along a vector field f . We use⊗ to denote the Kronecker product and GP(µ(x), K(x,x′))

to denote a Gaussian Process distribution with mean function µ(x) and covariance function

K(x,x′). A continuous function α : [0, a)→ [0,∞) is of class K if it is strictly increasing and

α(0) = 0. A continuous function α : R→ R is of extended class K∞ if it is strictly increasing,

α(0) = 0, and limr→∞ α(r) =∞. The special orthogonal group of dimension p is denoted by

SO(p), which is defined as the set of all p× p orthogonal matrices with determinant equal to 1:

SO(p) = {R ∈ Rp×p | R⊤R = Ip, det(R) = 1}.
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2.1 Lyapunov Theory

Lyapunov theory provides a fundamental framework for analyzing the stability of

dynamical systems. In robotics, it is often used to certify that a control policy drives the

system toward a desired equilibrium. This section introduces classical Lyapunov functions for

autonomous systems and then extends to CLFs for control-affine systems.

2.1.1 Lyapunov Stability for Autonomous Systems

Consider an autonomous system of the form:

ẋ = f(x), (2.1)

where x ∈ X ⊆ Rn is the state, and f : Rn → Rn is assumed to be locally Lipschitz to

ensure existence and uniqueness of the solutions to (2.1) [78]. Suppose the origin x = 0 is an

equilibrium point, i.e., f(0) = 0.

A continuously differentiable function V : X → R is called a Lyapunov function if it

satisfies:

V (0) = 0, V (x) > 0, V̇ (x) < 0 ∀x ̸= 0, (2.2)

where V̇ (x) = ∇V (x)⊤f(x) denotes the time derivative along system trajectories.

If, in addition, V (x)→∞ as ∥x∥ → ∞, then V is said to be radially unbounded, and

the origin is globally asymptotically stable.

Sum-of-Squares Optimization.

Sum-of-squares (SOS) optimization provides a powerful method for certifying Lyapunov

stability of polynomial systems. A polynomial p(x) is SOS if there exist polynomials {si(x)}

such that p(x) =
∑

i s
2
i (x). This implies p(x) ≥ 0 for all x, providing a tractable certificate of

non-negativity.
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If f and V are polynomial functions, the Lyapunov conditions:

V (x) > 0, V̇ (x) < 0, (2.3)

can be relaxed to:

V (x)− ϵ∥x∥2 ∈ SOS, −V̇ (x)− ϵ∥x∥2 ∈ SOS, (2.4)

for some small ϵ > 0. These SOS constraints can be encoded as semidefinite programs, enabling

efficient computation of polynomial Lyapunov functions for nonlinear systems [85, 115]. SOS

programming is especially valuable for certifying stability for systems with algebraic structure,

and has been widely applied in control and formal verification.

2.1.2 Control Lyapunov Functions (CLFs)

We now consider control-affine systems of the form:

ẋ = f(x) +G(x)u = [f(x) G(x)] ·

1
u

 := F(x)u, (2.5)

where x ∈ X ⊆ Rn is the system state, u ∈ Rm is the control input, and f : Rn → Rn,

G : Rn → Rn×m are locally Lipschitz.

Definition 2.1.1. A continuously differentiable function V : X → R≥0 is called a control

Lyapunov function (CLF) for the system (2.5) if:

1. V (x) is positive definite, i.e., V (x) > 0 for all x ̸= 0 and V (0) = 0;

2. There exists a class K function αV such that, for all x ∈ X \ {0}, there exists a control

input u ∈ Rm satisfying:

V̇ (x,u) + αV (V (x)) ≤ 0, (2.6)
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or equivalently,

CLC(x,u) := LfV (x) + LGV (x)u+ αV (V (x)) ≤ 0. (2.7)

The set of admissible inputs that satisfy the control Lyapunov condition (CLC) is defined

as:

KCLF(x) = {u ∈ Rm : CLC(x,u) ≤ 0} , (2.8)

The existence of a CLF guarantees that the system can be stabilized to the origin using a

feedback controller u(x) chosen from KCLF(x).

2.2 Barrier Theory

Barrier theory provides tools to formally certify the forward invariance of a given safe

set under the evolution of a dynamical system. In robotics, it is widely used to ensure that the

system state remains within a safe region for all time. This section focuses on control barrier

functions (CBFs) for control-affine systems.

2.2.1 Control Barrier Functions (CBFs)

Consider the control-affine system (2.5). Let the safe set be defined as the superlevel set

of a continuously differentiable function h : X → R:

C := {x ∈ X : h(x) ≥ 0}. (2.9)

Definition 2.2.1. A continuously differentiable function h : X → R is called a control barrier

function (CBF) for the system (2.5) if there exists an extended class K∞ function αh such that,

for all x ∈ X , there exists a control input u ∈ Rm satisfying:

ḣ(x,u) + αh(h(x)) ≥ 0, (2.10)
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or equivalently,

CBC(x,u) := Lfh(x) + LGh(x)u+ αh(h(x)) ≥ 0. (2.11)

The set of control inputs that render the set C forward invariant is defined as:

KCBF(x) = {u ∈ Rm : CBC(x,u) ≥ 0} . (2.12)

If h is a valid CBF, then for any initial condition x(0) ∈ C, the system remains safe under

any feedback control law u(x) ∈ KCBF(x).

2.2.2 CLF-CBF Quadratic Program

We now describe how to synthesize feedback controllers that simultaneously ensure safety

and stability for the control-affine system (2.5), using a quadratic program (QP) formulation.

Suppose we are given a nominal feedback controller k(x) that is not guaranteed to satisfy

safety or stability constraints. Let V and h be a control Lyapunov function (CLF) and control

barrier function (CBF), respectively, defined over the domain X . Since both the CLF and CBF

constraints are affine in the control input u, we can formulate the following QP to modify the

nominal control online:

(u(x), δ) ∈ argmin
u∈Rm,δ∈R

∥L(x)⊤(u− k(x))∥2 + λδ2

s.t. CLC(x,u) ≤ δ, CBC(x,u) ≥ 0,

(2.13)

where L(x) is a weighting matrix that penalizes deviation from the nominal controller, and δ ≥ 0

is a slack variable introduced to soften the CLF constraint and ensure feasibility. The scalar

λ > 0 controls the penalty for relaxing the CLF constraint.

This QP formulation yields a control input that minimally deviates from the nominal

controller while ensuring safety via the CBF constraint and encouraging stability via the (softened)

CLF constraint. As such, it provides a practical and scalable approach to real-time safe control
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synthesis for nonlinear robotic systems.

2.3 Chance Constraints and Distributionally Robust Opti-
mization

In many robotic control problems, safety constraints depend on uncertain quantities, such

as obstacle locations or sensor measurements. Let ξ denote a random vector with (unknown)

distribution P∗ supported on Ξ ⊆ Rk. Let G : Rm × Ξ→ R define an inequality constraint of

the form

G(u, ξ) ≤ 0, (2.14)

where u ∈ Rm is the decision variable (e.g., the control input). A natural formulation is the

chance-constrained program:

min
u∈Rm

c(u)

s.t. P∗(G(u, ξ) ≤ 0
)
≥ 1− ϵ,

(2.15)

where c : Rm → R is a convex cost (e.g., the CLF–CBF QP objective) and ϵ ∈ (0, 1) is the

allowable violation probability. The feasible set in (2.15) is generally nonconvex. A common

convex approximation replaces the chance constraint with a bound on the conditional value-at-risk

(CVaR) [112]:

CVaRP∗

1−ϵ

(
G(u, ξ)

)
≤ 0. (2.16)

For a random variable Q with distribution Pq, CVaR at level 1− ϵ is defined as

CVaRPq

1−ϵ(Q) := inf
s∈R

[
ϵ−1EPq

[
(Q+ s)+

]
− s
]
, (2.17)

where (·)+ := max{ ·, 0 }. This reformulation produces a convex inner approximation of the

chance-constrained feasible set [126].
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Because CVaR is a coherent and convex risk measure, it has been widely adopted in

control and robotics to deal with uncertainty. For instance, CVaR constraints have been used

in stochastic model predictive control [16, 149], risk-sensitive reinforcement learning [32, 156],

and motion planning under uncertainty [55, 129]. These works demonstrate that CVaR offers a

tractable and conservative surrogate to chance constraints, balancing safety and computational

efficiency.

The chance-constrained formulation (2.15) requires full knowledge of the distribution P∗,

while the CVaR reformulation (2.17) only requires computing expectations under P∗. In practice,

however, the true distribution is rarely available in robotics; instead, we typically have access

to a finite set of samples {ξi}Ni=1 (e.g., from LiDAR measurements or localization data). This

limitation motivates the use of distributionally robust optimization (DRO), where constraints are

enforced against a family of distributions consistent with the observed samples.

2.3.1 Wasserstein Ambiguity Sets

LetPN := 1
N

∑N
i=1 δξi denote the empirical distribution of the samples. The p-Wasserstein

distance between µ, ν ∈ Pp(Ξ), the set of Borel probability measures on Ξ with finite p-th

moment, is defined as:

Wp(µ, ν) :=

(
inf

β∈Q(µ,ν)

∫
Ξ×Ξ

η(ξ, ξ′)p dβ(ξ, ξ′)

) 1
p

, (2.18)

where Q(µ, ν) is the set of couplings of µ and ν, and η is the ground metric (we use η(ξ, ξ′) =

∥ξ − ξ′∥1).

The Wasserstein ambiguity set of radius r > 0 centered at PN is:

Mr
N :=

{
µ ∈ Pp(Ξ)

∣∣Wp(µ,PN) ≤ r
}
. (2.19)

Distributionally robust optimization (DRO) replaces the chance constraint in (2.15) with its dis-
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tributionally robust ambiguity setMr
N , yielding probabilistic guarantees against all distributions

within a Wasserstein ball around the empirical distribution.

2.3.2 Distributionally Robust Chance-Constrained Programs

The chance-constrained program (2.15) enforces safety in probability under the true

distribution P∗. When only samples {ξi}Ni=1 are available, we can replace P∗ with the Wasserstein

ambiguity set (2.19), yielding the distributionally robust chance-constrained program (DRCCP):

min
u∈Rm

c(u)

s.t. inf
P∈Mr

N

P
(
G(u, ξ) ≤ 0

)
≥ 1− ϵ.

(2.20)

The DRCCP (2.20) guarantees constraint satisfaction for all distributions in the Wasserstein ball

Mr
N around the empirical distribution PN .

As in the nominal case (2.15), the feasible set of (2.20) is generally nonconvex. A tractable

inner approximation is obtained by replacing the chance constraint with the CVaR [112, 126]:

sup
P∈Mr

N

CVaRP
1−ϵ

(
G(u, ξ)

)
≤ 0. (2.21)

2.4 Optimal Control and Reinforcement Learning

Optimal Control (OC) and Reinforcement Learning (RL) both aim to synthesize feedback

policies that optimize long-term performance for a dynamical system. They share the same

mathematical foundation in dynamic programming and Bellman optimality. The key distinction

lies in their information assumptions: OC methods typically require an explicit system model

and cost function, while RL can learn policies directly from data, enabling application in settings

where the model is unknown or difficult to obtain.
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2.4.1 Optimal Control

Consider the discrete-time control system:

xk+1 = f(xk,uk), xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, (2.22)

where X is open and f : X × U → X is locally Lipschitz. Given an initial state x0, the

infinite-horizon discounted optimal control problem is:

J∗
γ (x0) = min

π
Jπ
γ (x0) :=

∞∑
k=0

γk ℓ
(
xk,π(xk)

)
s.t. xk+1 = f(xk,π(xk)),

xk ∈ X , π(xk) ∈ U ,

(2.23)

where ℓ : X × U → R≥0 is the stage cost and γ ∈ (0, 1) is the discount factor. The optimal

policy π∗ minimizes the cost-to-go Jπ(x)
γ for all initial states, and the associated value function

J∗
γ satisfies the Bellman optimality equation:

J∗
γ (x) = min

u∈U

[
ℓ(x,u) + γ J∗

γ

(
f(x,u)

)]
. (2.24)

Classical methods such as dynamic programming, Riccati equations (for linear–quadratic

problems), and model predictive control (MPC) [123] approximate the solution of (2.24) to

compute near-optimal policies.

2.4.2 Reinforcement Learning

Reinforcement Learning (RL) addresses optimal control problems of the form (2.23)

when the system dynamics f or stage cost ℓ are partially or entirely unknown, but trajectories

(xk,uk, ℓk) can be obtained through interaction with the real system or a simulator. The objective
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is to learn a control policy π that maximizes the expected discounted return:

max
π

E

[
∞∑
k=0

γk r(xk,uk)

]
, r = −ℓ. (2.25)

Over the past decade, RL has achieved notable breakthroughs in continuous control and robotics,

with applications spanning agile locomotion, dexterous manipulation, and high-speed drone

racing.

Model-Free RL.

Model-free methods learn a policy (and often a value function) directly from sampled

experience without explicitly constructing a dynamics model. These methods are typically simple

to implement and resilient to modeling errors, but they often require large amounts of data.

Representative examples include value-based methods such as DQN [110] and policy-gradient

algorithms such as DDPG [92], PPO [131], and SAC [53], all of which have been successfully

deployed in both simulation and real-world robotic systems.

Model-Based RL.

Model-based methods learn (or exploit a known) system model to improve sample

efficiency and enable planning over future trajectories. They can naturally incorporate safety

constraints and task specifications, but are often sensitive to model inaccuracies. Recent advances

such as TD-MPC [60, 61], DreamerV2 [54], and champion-level drone racing via learned

dynamics models [76] demonstrate the potential of model-based approaches for high-speed,

vision-based, and complex control tasks.
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Chapter 3

Robust and Probabilistic Formulation of
Safe Control

Ensuring safety in autonomous systems operating in complex, dynamic, and partially

unknown environments remains a fundamental challenge in robotics. Robust operation requires

the integration of rich environment representations with control synthesis techniques that can

provide safety guarantees under uncertainty in both perception and dynamics. Figure 3.1

illustrates a representative scenario: a ground robot equipped with a LiDAR scanner navigating

safely along a desired path in an unknown indoor environment. Traditional motion planning and

control strategies often assume that obstacle locations and robot dynamics are known exactly, or

that the robot’s geometry can be approximated by simple shapes such as points or circles. While

such assumptions simplify the control design process, they severely limit applicability in realistic

scenarios where environments are only partially observable, obstacle geometry can be complex,

and dynamics models may be uncertain.

The development of control barrier functions (CBFs) [8, 9] has provided a powerful

framework for encoding safety constraints in real-time control synthesis. By combining CBFs

with control Lyapunov functions (CLFs) [13, 133], one can formulate a quadratic program (QP)

that ensures both safety and stability for control-affine systems. CBF-CLF-QP methods have been

successfully applied to a variety of robotic systems, including mobile robots, legged platforms,

and automotive systems [113, 141, 148]. However, a key limitation in most existing work is the
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Figure 3.1. A ground robot equipped with a LiDAR scanner is navigating safely along a desired path
(blue curve) in an unknown room.

reliance on a priori known barrier functions derived from exact knowledge of the environment

and system model. When the robot operates in an unknown or changing environment, these

barrier functions must be estimated online from sensor data. In this setting, both the barrier

function itself and its gradient are subject to estimation errors, which can degrade safety if not

explicitly accounted for in the control synthesis process.

A related challenge is the choice of environment representation for online estimation and

control. Classical occupancy grid and mapping techniques, such as Octomap [70] or Voxblox

[114], provide probabilistic or truncated signed distance information on a discretized spatial

grid. While effective for mapping, these representations can be memory-intensive and do not

naturally provide the continuous distance and gradient information required for CBF-based

safety constraints. Implicit shape representations, such as signed distance functions (SDFs),

offer a compelling alternative: they define the distance to an object surface at any query
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point, with the sign indicating inside/outside status. SDFs can be evaluated continuously and

differentiated to provide exact surface normals, making them particularly suitable for integration

into optimization-based control.

Recent advances in neural implicit modeling, such as DeepSDF [116] and occupancy

networks [107], demonstrate that SDFs can be represented by compact neural networks trained

from sparse observations. However, most of these methods are designed for offline learning of

static shapes from dense datasets. For safe navigation in unknown environments, the robot must

be able to construct and update SDFs online from streaming sensor measurements. Furthermore,

to ensure persistent accuracy, the representation must avoid catastrophic forgetting of previously

observed regions while adapting to new data.

Beyond the environment model, realistic safety constraints must also account for the

geometry of both the robot and the obstacles. Point-robot and circular-robot assumptions,

common in CBF-based obstacle avoidance [1, 36, 77, 154], are inadequate when the robot has a

complex body shape or when obstacles cannot be well approximated by simple primitives. For

example, in manipulation or cluttered navigation tasks, the robot and obstacles may be better

modeled by polygons, ellipses, or unions of convex sets. Accurate distance computation between

such shapes is essential for defining CBFs that are both safe and minimally conservative. While

numerical optimization can be used to compute distances between general convex shapes, it is

often too slow for real-time control loops, especially in dynamic environments where obstacle

positions and orientations change over time.

An equally important source of complexity arises from uncertainty in the robot’s dynamics

model and in the estimated barrier functions. In practice, dynamics models are learned or

identified from data, and may deviate from the true system due to unmodeled effects, changing

payloads, or external disturbances. Similarly, barrier functions derived from noisy sensor data and

learned environment models are subject to estimation error. Standard CBF-CLF-QP formulations,

which assume exact knowledge of these quantities, cannot guarantee safety under such uncertainty.

This motivates the development of uncertainty-aware formulations, where safety constraints are
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satisfied either in a probabilistic sense, given a distributional model of uncertainty, or in a robust

worst-case sense, given deterministic error bounds.

This chapter addresses these challenges by presenting an integrated framework for envi-

ronment modeling and safe control synthesis under uncertainty, grounded in three complementary

contributions:

1. Online neural signed distance field learning with replay memory: We develop an

incremental learning approach for continuous, differentiable SDF representations of

obstacles from onboard range measurements, augmented with a replay memory to prevent

forgetting of previously observed surfaces. The learned SDFs directly provide distance

and gradient information for CBF construction and can adapt online to new observations.

2. Uncertainty-aware safe control synthesis: We extend the CBF–CLF framework to handle

uncertainty in both the dynamics and the barrier functions. We present two formulations: a

probabilistic approach using Gaussian process models and Cantelli’s inequality to enforce

safety with a specified risk tolerance, and a robust approach that enforces safety for all

disturbances within known error bounds. Both lead to convex second-order cone programs

(SOCPs) that are tractable in real time.

3. Shape-aware control barrier functions for complex geometries: We derive an analytic

formula for computing the distance and gradient between a polygonal robot body and an

elliptical obstacle in SE(2), enabling time-varying CBFs for dynamic environments with

realistic robot and obstacle shapes. The analytic nature of the computation ensures both

accuracy and computational efficiency.

These contributions build a unified control pipeline: first, construct a continuous and

differentiable environment model from sensor data; second, translate this model into shape-aware

CBF constraints; third, incorporate uncertainty into the constraints via probabilistic or robust

formulations; and finally, solve a convex optimization problem to synthesize safe control inputs

in real time.
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By integrating learning-based environment representation, analytic shape modeling,

and uncertainty-aware control synthesis, the framework presented in this chapter significantly

broadens the applicability of CBF-based safe control to realistic scenarios. It enables autonomous

systems to operate safely in environments that are only partially known, with dynamic obstacles

and complex geometries, and under uncertainty in both sensing and dynamics. The methods have

been validated in simulation for both mobile robots and articulated manipulators, demonstrating

real-time feasibility and strong safety performance.

This chapter is based on the papers [98, 101, 102], which respectively address online

learning of SDF-based barrier functions, robust and probabilistic CBF formulations under

uncertainty, and analytic CBF design for polygonal robots in dynamic elliptical environments.

Here, we present them in a unified narrative to highlight their complementarity and integration

into a cohesive safe control framework.

In this chapter, we address the following problem:

Problem 1. Consider the estimated system dynamics

ẋ = f̃(x) + G̃(x)u,

together with an estimated barrier function h̃(x) and its gradient ∇h̃(x) constructed from online

sensor data. The objective is to design a feedback control law u(x) such that, for all x ∈ X ,

CLC(x,u) ≤ δ, CBC(x,u) ≥ 0, (3.1)

where CLC and CBC denote the control Lyapunov and control barrier constraints, respectively,

and δ ≥ 0 specifies an allowable relaxation margin.
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3.1 Environment Geometric Representation

Accurate and computationally efficient representations of the robot’s environment are

critical for safe navigation and control. The choice of representation affects not only collision

checking and planning, but also the ability to reason about uncertainty in sensing and localization.

In this work, we consider two complementary approaches to environment modeling: (i) learning

continuous signed distance fields (SDFs) directly from sensor data, and (ii) deriving analytic

distance functions for polygonal and elliptical shapes. Both approaches provide distance and

gradient information that can be directly incorporated into optimization-based safe control

frameworks.

3.1.1 Learning Signed Distance Fields from Sensor Data

The signed distance function (SDF) of a set Ω in a metric space measures the distance

of a point x to the boundary ∂Ω, with the sign indicating whether x lies inside or outside Ω.

SDFs provide an implicit surface representation widely used in computer vision and graphics for

surface reconstruction and rendering [93, 116]. Compared to other geometric representations, an

SDF directly encodes both distance and gradient information to surfaces, which is essential for

collision avoidance in autonomous navigation [58].

In this work, we approximate the SDFs of observed obstacles online and use them to

define CBFs for control synthesis. The robot operates in a workspace Rw (with w = 2 or 3),

which we partition into the free space S ⊂ Rw and the obstacle space O = ∪iOi, where each

Oi ⊂ Rw denotes an individual obstacle. Thus, S = Rw \O. The robot is equipped with a range

sensor (e.g., LiDAR) and follows a desired path while relying on noisy distance measurements for

collision avoidance. A path is a piecewise-continuous function r : [0, 1] 7→ Int(S). At discrete

times tk, k ∈ N, the sensor returns a set of points Pk,i = {pk,i,j}j ⊂ F(x(tk)) ∩ ∂Oi, lying on

the boundary ∂Oi of each obstacle Oi that is within the field of view F(x) of the robot at state x.
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For each obstacle i, the SDF φi : Y → R is defined as:

φi(y) :=


−d(y, ∂Oi), y ∈ Oi,

d(y, ∂Oi), y /∈ Oi,

(3.2)

where d denotes the Euclidean distance between a point and a set. Our goal is to construct online

approximations φ̃i of φi using the point cloud measurements {Pk,i}k.

Data Pre-processing

Given the point cloud Pk,i ⊂ Rw on the surface of obstacle i at time tk, we interpret

Pk,i as samples on the zero-level set of the SDF. To normalize the data scale, we express point

coordinates relative to the obstacle centroid, approximated as the sample mean:

p̄k,i :=
1

m

m∑
j=1

pk,i,j.

The centered points pk,i,j − p̄k,i have a measured distance of 0 to ∂v(Oi).

To provide off-surface training points, we define a small positive constant δ > 0 and

construct truncated SDF points qk,i,j along the LiDAR ray from the robot’s position v(xk) to

pk,i,j:

c := ∥v(xk)− pk,i,j∥, qk,i,j :=
δ

c
v(xk) +

(
1− δ

c

)
pk,i,j.

Here, qk,i,j is approximately at distance δ from ∂v(Oi). The training set at time tk is:

Dk,i := {(pk,i,j − p̄k,i, 0)} ∪ {(qk,i,j − p̄k,i, δ)}.

Loss Function

We approximate φi using a fully connected neural network φ̃i(y;θk) with parameters θk.

Since the true SDF satisfies the Eikonal equation ∥∇φi(y)∥ = 1 almost everywhere, we design a
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loss function combining a distance loss ℓDi and an Eikonal loss ℓEi :

ℓi(θk;D,D′) := ℓDi (θk;D) + λ ℓEi (θk;D′), λ > 0,

ℓDi (θk;D) :=
1

|D|
∑

(p,d)∈D

∣∣φ̃i(p;θk)− d
∣∣,

ℓEi (θk;D′) :=
1

|D′|
∑
p∈D′

(∥∇φ̃i(p;θk)∥ − 1) .

(3.3)

The Eikonal training set D′ is generated by mixing uniformly distributed points in Y with

Gaussian samples centered at D points, with standard deviation equal to the distance to the k-th

nearest neighbor (k = |D|/2).

Using all accumulated data ∪kl=0Dl,i would yield the most accurate SDF estimates but is

computationally impractical online. We address this in Sec. 3.1.1 via an incremental training

strategy with replay memory.
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Incremental Learning

(a) Training data at k = 0 (b) IT data at k = 70 (c) ITRM data at k = 70

(d) Estimation at k = 0 (e) IT estimation at
k = 70

(f) ITRM estimation at
k = 70

Figure 3.2. Shape estimation with and without replay memory. The top row shows the training data
used at time step k = 0 and k = 70 by the IT and ITRM approaches. The purple points are the observed
LiDAR end points, while the blue points are the truncated SDF points along the LiDAR rays. In (c), the
green and red points are boundary and truncated SDF points obtained from the replay memory. The
bottom row shows the SDF estimation of the obstacle surface at time step k = 0 and k = 70 for the IT and
ITRM approaches. The black rectangle shows the ground-truth obstacle boundary, while colored regions
are level-sets of the SDF estimate. The white region denotes the estimated obstacle boundary. The blue
(resp. red) region denotes negative (resp. positive) signed distance. IT and ITRM use the same data and
lead to the same estimate at k = 0 because the replay memory set is empty. In (e), the SDF estimate of the
top obstacle region at k = 70, without memory replay, degrades compared to (d). In (f), training with
replay memory helps the neural network remember the overall obstacle shape.

We compare three online update strategies:

• Incremental Training (IT): Update φ̃i using only Dk,i, initialized from θk−1. Fast but

suffers from catastrophic forgetting.
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• Batch Training (BT): Use all accumulated data ∪kl=0Dl,i at tk. Avoids forgetting but training

time grows with k.

• Incremental Training with Replay Memory (ITRM): Combine Dk,i with a balanced subset

of previously stored replay samples.

The replay memory for an SDF φ with truncation parameter τ ≥ 0 is:

Q := {(q, φ(q)) ∈ Rw × R | |φ(q)| ≤ τ}.

We sample level sets of φ̃i using Marching Cubes [106], extracting points q0 and qδ from the 0

and δ level sets. The replay memory at tk−1 is:

Qk−1,i := {(q0, 0)} ∪ {(qδ, δ)}.

At tk, ITRM trains on:

D = Dk,i ∪ Q̄k−1,i, |Q̄k−1,i| = |Dk,i|.

This balances efficiency and accuracy, as illustrated in Fig. 3.2.

We use the Softplus activation ln(1 + ex) to ensure φ̃i is continuously differentiable,

enabling gradient computation via backpropagation for the Eikonal loss.

3.1.2 Analytic Distances for Polygon-Ellipse Geometry

In this section, we derive an analytic formula for computing the distance between a

polygon and an ellipse, which also enables the formulation of CBFs to ensure safe autonomy.

We consider the mobile robot’s body S(x) to be described as a polygon, denoted by

P(q̃, R̃(θ̃), {p̃i}M−1
i=0 ). Here, q̃ denotes the center of mass and R̃ denotes the orientation in the

inertial frame. In its fixed-body frame, {p̃i} denotes the vertices of the robot with line segments

d̃i = p̃[i+1]M − p̃i for i = 0, 1, . . . ,M − 1 where [·]M is the M -modulus.
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For convenience, denote E and P as the bodies in the inertial frame, and we assume their

intersection is empty. Now, denote E ′ and P ′ as the respective bodies in the body-fixed frame of

the elliptical obstacle. As a result, d(E ,P) = d(E ′,P ′) by isometric transformation.

Furthermore, let p̃i be a vertex in the robot’s frame. Then in the inertial frame, it becomes

pi = q̃+ R̃p̃i. In the obstacle’s frame, it is

p′
i = R⊤(pi − q) = R⊤R̃p̃i +R⊤(q̃− q), (3.4)

In short, {p̃i} are vertices in the robot’s frame, {pi} are vertices in the inertial frame, and {p′
i}

are vertices in the obstacle’s frame. The distance function is

d(E ′,P ′) := min
i∈[M−1]

d(E ′,d′
i), (3.5)

which computes the distance between the ellipse E ′ and each line segment d′
i. We write each

segment as

l′i(τ) = (1− τ)p′
i + τp′

[i+1]M
, (3.6)

for τ ∈ [0, 1]. This further simplifies the function to

d(E ′,d′
i) = min

τ∈[0,1]
d(E ′, l′i(τ)). (3.7)

Now, there are essentially two groups of computations for the distance in (3.7): one is the

distance between the ellipse E ′ and the endpoints of d′
i; the other is the distance between the

ellipse E ′ and the infinite line l′i(τ) for arbitrary τ with the caveat that the minimizing argument

occurs at τ ∗ ∈ (0, 1). The two computations are detailed in the procedures which follow our next

proposition.

Proposition 3.1.1. Let E ′ be an ellipse and l′i be a line segment in the frame of the ellipse. Denote
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τ ∗ as the argument of the minimum in (3.7). Then, the distance

d(E ′,d′
i) =


∥p′

i − p′
i∥, if τ ∗ = 0,

∥p′
[i+1]M

− p′
[i+1]M

∥, if τ ∗ = 1,

∥l′i(τ ∗)− l′i(τ ∗)∥, if τ ∗ ∈ (0, 1),

(3.8)

where pi′ and p[i+ 1]M ′ are the points on the ellipse closest to pi′ and p[i+ 1]M ′, respectively.

These points are determined using Procedure 1. The terms l′i(τ ∗) and l′i(τ ∗) (on the ellipse) are

determined using Procedure 2.

Procedure 1. Let p′ = (p′x, p
′
y) be one of the endpoints for the line segment d′

i. Recall that the

ellipse is defined by its semi-axes along x-axis and y-axis, denoted by a and b, respectively. The

points on the ellipse are parameterized by

x(t) = a cos(t), y(t) = b sin(t), (3.9)

for 0 ≤ t ≤ 2π. The goal is to determine the point (x(t), y(t)) on the ellipse that is closest to the

point p′, so it is a minimization problem of the squared Euclidean distance:

d2(t) = (p′x − a cos(t))2 + (p′y − b sin(t))2. (3.10)

To find the minimum distance, we determine the critical point(s) by solving for 0 = d
dt
d2(t),

which simplified to

0 = (b2 − a2) cos t sin t+ ap′x sin t− bp′y cos t. (3.11)

Using single-variable optimization, we substitute

cos t = λ, sin t =
√
1− λ, (3.12)
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and this yields bp′yλ =
√
1− λ2((b2−a2)λ+ap′x), which is a quartic equation in λ. Furthermore,

a monic quartic can be derived, which gives the following simplified coefficients:

0 = λ4 + 2mλ3 + (m2 + n2 − 1)λ2 − 2mλ−m2, (3.13)

where

m = p′x
a

b2 − a2
, n = p′y

b

b2 − a2
. (3.14)

From this point, the real root(s) of the equation can be solved analytically following Cardano’s

and Ferrari’s solution for the quartic equations [23]. Let t be the solution so that p′ = (x(t), y(t))

is a point on the ellipse and is closest to p′. Hence,

d(E ′,d′
i) = ∥p′ − p′∥ (3.15)

where p′ is either p′
i or p′

[i+1]M
.

Procedure 2. We compute the distance between the ellipse E ′ and the infinite line l′i(τ) whose

minimizing point occurs at τ ∗ ∈ (0, 1). First, define the unit normal of the infinite line as

n̂′
i =

1

∥d′
i∥
(−d′i,y, d′i,x). (3.16)

Denote l′i(τ ∗) as the point on the ellipse that is closest to the l′i(τ ∗). In fact, this point l′i(τ ∗) must

have a tangent line at the ellipse which is parallel to l′i; which means the normal at l′i(τ ∗) is ±n̂′
i.

Therefore, we compute the point on the ellipse up to a sign:

l′i(τ
∗) = ± I2ϵ n̂

′
i

∥Iϵn̂′
i∥
, (3.17)

where Iϵ = diag(a, b). The correct sign is chosen when we are looking at the sign of the constant
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C in the line equation Ax+By + C = 0 of l′i. In particular,

C = −n̂′⊤
i p′

i. (3.18)

If C > 0, then l′i(τ ∗) = −
I2ϵ n̂

′
i

∥Iϵn̂′
i∥

; otherwise, if C < 0, then l′i(τ ∗) =
I2ϵ n̂

′
i

∥Iϵn̂′
i∥

. Finally, we determine

l′i(τ
∗) on the line segment d′

i using projection:

l′i(τ
∗) = p′

i + projd′
i
(l′i(τ

∗)− p′
i). (3.19)

Here, we are done with Procedure 2.

Next, we compute the partial derivatives of d(E ′,P ′) with respect to either (q,R), the

configuration of the obstacle, or (q̃, R̃), the configuration of the polygonal robot.

In general, both procedures above compute the distance using the Euclidean norm between

two unique points: one point p′ on a line segment of the robot, and the other p′ on the ellipse.

This is, in fact, equivalent to the SDF of the ellipse evaluated at p′ by the uniqueness of these two

points. Therefore, let p′ = li(τ
∗) for some 0 ≤ i < M , then

d(E ′,P ′) = ψE(p
′) = ψE(li(τ

∗)). (3.20)

Then, its gradient with respect to p′ is ∇ψE(p
′) =

p′−p′

∥p′−p′∥ . However, note that p′ is a point

transformed from the polygonal robot’s frame using (3.4), which depends on the configurations

of the elliptical obstacle and the robot. Hence the partial derivatives can be computed as follows.

Proposition 3.1.2. Let E ′ and P ′ be the elliptical obstacle and polygonal robot, respectively, in

the obstacle’s frame. Let p′ and p′ be determined from Proposition 3.1.1, then

∂d

∂q
=

(
∂d

∂qx
,
∂d

∂qy

)
= −R∇ψE(p

′), (3.21)

∂d

∂R
= ∇ψE(p

′)⊗ (R̃p̃+ (q̃− q)), (3.22)
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∂d

∂q̃
=

(
∂d

∂q̃x
,
∂d

∂q̃y

)
= R∇ψE(p

′), (3.23)

∂d

∂R̃
= R(∇ψE(p

′)⊗ p̃). (3.24)

Furthermore, (3.22) and (3.24) are derivatives with respect to the rotation matrices; one may

compute the derivatives with respect to the rotation angle as

∂d

∂θ
= ∇ψE(p

′)⊤
[
∂R

∂θ

⊤
(R̃p̃+ (q̃− q))

]
= tr

[
∂d

∂R

∂R

∂θ

]
,

(3.25)

∂d

∂θ̃
= ∇ψE(p

′)⊤

[
R⊤∂R̃

∂θ̃
p̃

]
= tr

[
∂d

∂R̃

∂R̃

∂θ̃

⊤]
. (3.26)

Following both propositions above, we compute the distance function

Φ(q,R, q̃, R̃) = d(E ,P) = d(E ′,P ′) (3.27)

for the elliptical obstacle E(q,R, a, b) and the polygonal robot P(q̃, R̃, {p̃i}).

Proposition 3.1.1 shows that the ellipse–polygon distance can be computed exactly by

considering only a finite set of cases: distances to the endpoints and to the line segment interior.

This result not only provides a closed-form distance evaluation but also admits analytic gradients

with respect to the robot and obstacle configurations, as shown in Proposition 3.1.2. These

properties are critical for integrating the distance function (3.27) into control barrier functions,

enabling safe robot autonomy with both geometric accuracy and computational efficiency.

Up to this point, we have assumed that the robot’s geometry, state, and environment

are perfectly known. In the next section, we turn to more realistic scenarios where the system

dynamics and environment geometry are uncertain and must instead be estimated in real time

from onboard sensors.
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3.2 Safe Navigation Under Uncertainty

We focus on enforcing safety and stability for the control-affine system in (2.5) when the

system dynamics F(x) and the barrier function h(x) are unknown and need to be estimated from

data.

As discussed in Sec. 3.1, the CBF is estimated online. Similarly, the system dynamics in

(2.5) may also be uncertain and needs to be estimated. Our main goal is to develop techniques for

safe and stable control synthesis with the estimated F (x) and h(x). We consider two scenarios,

depending on whether probabilistic or worst-case error descriptions of the dynamics and barrier

functions are available.

Safety and Stability with Gaussian Process Distributed System Dynamics and Barrier
Function

When the system dynamics and barrier functions can be described as Gaussian Processes

(GPs), we consider the following probabilistic control synthesis problem.

Problem 2 (Safety and stability under Gaussian uncertainty). Given an estimated distribution

on the dynamics vec(F (x)) ∼ GP(vec(F̃(x)), KF (x,x
′)) and an estimated distribution on the

barrier function h(x) ∼ GP(h̃(x), Kh(x,x
′)), design a feedback controller k such that, for each

x ∈ X :

P(CLC(x,k(x)) ≤ δ) ≥ p, P(CBC(x,k(x)) ≥ 0) ≥ p,

where p ∈ (0, 1) is a user-specified risk tolerance.

Safety and Stability with Worst-Case Uncertainty in System Dynamics and Barrier
Function

Many robotic systems require instead the guarantee that safety and stability hold under

all possible error realizations, which motivates us to also consider the following problem.

Problem 3 (Safety and stability under worst-case uncertainty). Given estimated system
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dynamics F̃(x) with known error bound eF (x),

∥F(x)− F̃(x)∥ ≤ eF (x), ∀x ∈ X , (3.28)

and estimated barrier function h̃(x) and gradient ∇h̃(x) with known error bounds eh(x) and

e∇h(x), i.e., for all x ∈ X ,

|h(x)− h̃(x)| ≤ eh(x), ∥∇h(x)−∇h̃(x)∥ ≤ e∇h(x), (3.29)

design a feedback controller k such that, for each x ∈ X :

CLC(x,k(x)) ≤ δ, CBC(x,k(x)) ≥ 0.

We rely on the estimated CBFs in Sec. 3.1 to formalize the synthesis of a controller that

guarantees safety with respect to the exact obstacles, despite errors in the CBF approximation.

Our analysis assumes error bounds are available, and we leave their actual computation for future

work. In this regard, several recent works study the approximation power and error bounds of

neural networks [14, 153].

3.2.1 Probabilistic Safe Control Formulation

This section presents our solution to Problem 2.

Inspired by the design (2.13) when the dynamics and the barrier function are known, we

formulate the control synthesis problem via the following optimization problem:

min
u∈U ,δ∈R

∥L(x)⊤(u− k̃(x))∥2 + λδ2, (3.30)

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p.

The uncertainty in F and h affects the linearity in u of the CLC and CBC conditions in the
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constraints of (3.30), making this optimization problem no longer a QP. Here, we justify that

nevertheless the optimization can be solved efficiently. To show this, we start by analyzing the

distributions of CBC(x,u) and CLC(x,u) in detail.

Proposition 3.2.1 (Mean and Variance for CBC). Assume h is a CBF with a linear function αh,

i.e., αh(z) = a · z for a ∈ R≥0. Given independent distributions h(x) ∼ GP(h̃(x), Kh(x,x
′))

and vec(F (x)) ∼ GP(vec(F̃(x)), KF (x,x
′)), the mean and variance of CBC(x,u) satisfy

E[CBC(x,u)] = E[p(x)]⊤u (3.31a)

Var[CBC(x,u)] = u⊤Var[p(x)]u, (3.31b)

wherep(x) := F⊤(x)[∇xh(x)]+
[
ah(x) 0⊤

m

]⊤ ∈ Rm+1 andE[p(x)], Var[p(x)] are computed

in (3.37).

Proof. The control barrier condition can be written as:

CBC(x,u) = [∇xh(x)]
⊤f(x) + [∇xh(x)]

⊤G(x)u+ ah(x)

=
[
[∇xh(x)]

⊤F(x)+
[
ah(x) 0⊤

m

] ]
u = p(x)⊤u.

Note that ∇xh(x) is a GP because the gradient of a GP with differentiable mean function and

twice-differentiable covariance function is also a GP, cf. [39, Lemma 6],

∇xh(x) ∼ GP(∇xh̃(x),Hx,x′Kh(x,x
′)),

where Hx,x′Kh(x,x
′) =

[
∂2Kh(x,x

′)
∂xi,∂x′

j

]n,n
i=1,j=1

is finite for all (x,x′) ∈ R2n. Since vec(ABC) =

(C⊤ ⊗A)vec(B) for appropriately sized matrices A, B, C, we can write

Var(F (x)u) = Var((u⊤ ⊗ In)vec(F(x)))

= (u⊤ ⊗ In)KF (x,x)(u⊗ In).

(3.32)
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For brevity, we let KF := KF (x,x
′) and Kh := Kh(x,x

′) and p1 = F⊤(x)[∇xh(x)]. The term

[∇xh(x)]
⊤F(x)u is an inner product of two independent GPs,∇xh(x) and F(x)u. Thus, using

[39, Lemma 5], (3.32), and that Cov(∇xh(x),F(x)u) = 0, p⊤
1 u corresponds to a distribution

with mean and variance:

E[p⊤
1 u] = [∇xh̃(x)]

⊤F̃(x)u,

Var[p⊤
1 u] = [∇xh̃(x)]

⊤(u⊤ ⊗ In)KF

(u⊗ In)∇xh̃(x) + u⊤F̃⊤(x)Hx,x′KhF̃(x)u.

(3.33)

To factorizeu from the variance expression, we apply the property (A⊗B)(C⊗D) = AC⊗BD

two times,
(u⊗ In)[∇xh̃(x)] = (u⊗ In)(1⊗ [∇xh̃(x)])

= u⊗∇xh̃(x) = (Im+1 ⊗∇xh̃(x))u.

(3.34)

By substituting (3.34) in (3.33), we can factorize out u to get,

Var[p1] = (Im+1 ⊗ [∇xh̃(x)]
⊤)KF (Im+1 ⊗∇xh̃(x)) + F̃⊤(x)Hx,x′KhF̃(x). (3.35)

Next, we write Cov(h(x),p⊤
1 u) using [39, Lemma 5] and Cov(h(x),F(x)u) = 0,

Cov(h(x),p⊤
1 u) = Cov(h(x),∇xh(x))F̃(x)u =

[
[∇xKh]

⊤f̃(x) [∇xKh]
⊤G̃(x)

]
u. (3.36)

Using (3.33), (3.35) and (3.36), we write the mean and variance,

E[p(x)] = [∇xh̃(x)]
⊤F̃(x) + a[h̃(x) 0⊤

m]
⊤

Var[p(x)] = F̃⊤(x)Hx,x′KhF̃(x) + (Im+1 ⊗∇xh̃(x)
⊤)KF (Im+1 ⊗∇xh̃(x)) (3.37)

+

a2Kh + 2a[∇xKh]
⊤f̃(x) a[∇xKh]

⊤G̃(x)

aG̃(x)⊤[∇xKh] 0m×m

 ,
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from which the statement follows.

Proposition 3.2.1 makes two points explicit. First, under independent GPs for h and F , the

CBC is affine in u in expectation and quadratic in u in variance; equivalently, uncertainty enters

as an ellipsoidal form u⊤Var[p(x)]u. Second, the vector p(x) bundles all uncertainty channels

that influence safety—geometry via h and dynamics via F—so that correlated or high-variance

components directly shrink the feasible control set. Importantly, the result yields closed-form

sensitivities of safety to u, which we exploit for a convex risk-aware reformulation later.

Next, we describe the distribution of CLC(x,u).

Proposition 3.2.2 (Gaussian distribution for CLC). Given the distribution vec(F (x)) ∼

GP(vec(F̃(x)), KF (x,x
′)), the CLC(x,u) is Gaussian with mean and variance:

E[CLC(x,u)]=E[q(x)]⊤u (3.38a)

Var[CLC(x,u)]=u⊤Var[q(x)]u, (3.38b)

where q(x) := F⊤(x)[∇xV (x)] + [αV (V (x)) 0⊤
m]

⊤ ∈ Rm+1 and E[q(x)], Var[q(x)] are

computed in (3.39).

Proof. We can write the control Lyapunov condition as CLC(x,u) = [∇xV (x)]⊤F(x)u +

αV (V (x)) = q⊤(x)u. We use the Kronecker product property vec(ABC) = (C⊤ ⊗A)vec(B)

to rewrite first term in q(x) as:

[∇xV (x)]⊤F(x) = (Im+1 ⊗ [∇xV (x)]⊤)vec(F (x)).

Since vec(F(x)) ∼ GP(vec(F̃(x)), KF (x,x
′)) and [∇xV (x)], αV (V (x)) are known and deter-

ministic and , we can express the distribution of q(x) as follows:

E[q(x)]= F̃⊤(x)[∇xV (x)] + [αV (V (x)) 0⊤
m]

⊤ (3.39)
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Var[q(x)]=(Im+1 ⊗ [∇xV (x)]⊤)KF (Im+1 ⊗ [∇xV (x)]).

The result follows from plugging (3.39) into CLC(x,u).

The CLC inherits the same affine/ellipsoidal structure in u, with uncertainty driven solely

by F because V is known.

Next, we use the mean and variance of CBC(x,u) and CLC(x,u) obtained above to

approximate the probabilistic safety and stability constraints in (3.30). To make (3.30) tractable,

we seek convex reformulations that can be solved efficiently in real time. The following

result shows that, using Cantelli’s inequality, the probabilistic constraints can be converted into

second-order cone (SOC) constraints, resulting in a standard SOCP formulation.

Proposition 3.2.3 (Probabilistic CLF-CBF SOCP). Given a user-specified risk tolerance

p ∈ [0, 1), let c(p) =
√

p
1−p

. The optimization problem (3.30) can be formulated as the following

second-order cone program:

min
u∈U ,δ∈R,l∈R

l

s.t. δ − E[q(x)]⊤u ≥ c(p)
√

u⊤Var[q(x)]u,

E[p(x)]⊤u ≥ c(p)
√

u⊤Var[p(x)]u,

l + 1 ≥
√
∥2L(x)⊤(u− k̃(x))∥2 + (2

√
λδ)2 + (l − 1)2

(3.40)

where p, q are defined in Propositions 3.2.1 and 3.2.2, resp.

Proof. To deal with the probabilistic constraints in (3.30), we employ Cantelli’s inequality [22].

For any scalar γ ≥ 0,

P(CBC(x,u) ≥ E[CBC(x,u))]− γ|x,u) ≥

1− Var[CBC(x,u)]
Var[CBC(x,u)] + γ2

.
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Given this inequality, and since we want P(CBC(x,u) ≥ 0) ≥ p, we choose γ = E[CBC(x,u)]

and require the lower bound to be greater than or equal to p, i.e., 1− Var[CBC(x,u)]
Var[CBC(x,u)]+γ2 ≥ p. The

equation can be rearranged into

E[CBC(x,u)] = γ ≥
√

p

1− p
Var[CBC(x,u)],

which corresponds to the safety constraint in (3.40).

Next, we show that this is a second-order cone (SOC) constraint. By (3.31), given that h̃,

∇h̃ and F̃ are known and deterministic, the expectation E[CBC(x,u)] = E[p(x)]⊤u is affine in

u. Since Var[p(x)] is positive semi-definite,

√
Var[CBC(x,u)] =

√
u⊤Var[p(x)]u = ∥D(x)u∥ (3.41)

where D(x)⊤D(x) = Var[p(x)]. Acccording to [5], the safety constraint in (3.40) is a valid

SOC constraint.

For stability, the CLC condition can be constructed using a similar approach with Cantelli’s

inequality, resulting in (3.40). By (3.38), we know that the expectation is affine in u and the

variance is quadratic in terms of u, similar to (3.41). This shows that the CLC condition is also a

valid SOC constraint.

Our last step is to reformulate the minimization of the objective function as a linear

objective with an SOC constraint, resulting in the standard SOCP in (3.40). We introduce a new

variable l so that the problem in (3.30) is equivalent to

min
u∈U ,δ∈R,l∈R

l

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p,

∥L(x)⊤(u− k̃(x))∥2 + λδ2 ≤ l. (3.42)
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The last constraint in (3.42) corresponds to a rotated second-order cone, Qn
rot := {(xr, yr, zr) ∈

Rn+2 | ∥xr∥2 ≤ yrzr, yr ≥ 0, zr ≥ 0}, which can be converted into a standard SOC constraint [5],∥∥∥∥∥
[
2xr yr − zr

]⊤∥∥∥∥∥ ≤ yr + zr. Let yr = l, zr = 1 and consider the constraint ∥L(x)⊤(u −

k̃(x))∥2 + λδ2 ≤ l. Multiplying both sides by 4 and adding (l − 1)2, makes the constraint

equivalent to

4∥L(x)⊤(u− k̃(x))∥2 + 4λδ2 + (l − 1)2 ≤ (l + 1)2.

Taking a square root on both sides, we end up with

√
∥2L(x)⊤(u− k̃(x))∥2 + (2

√
λ δ)2 + (l − 1)2 ≤ l + 1,

which is equivalent to the third constraint in (3.40).

Remark 3.2.4 (Effects of risk-tolerance p and variance). When p = 0, the probabilistic

CLF-CBF-SOCP (3.40) reduces to the original CLF-CBF-QP (2.13). As p and/or Var[p(x)],

Var[q(x)] increase, the feasible region of (3.40) gets smaller, and the optimal value worsens, cf.

Fig. 3.3b for an illustration.

Proposition 3.2.3 establishes that probabilistic CLF-CBF constraints can be enforced

within a convex optimization framework. This is significant for two reasons. First, it shows

that risk-aware safety and stability constraints can be handled in real time using off-the-shelf

SOCP solvers. Second, the reformulation makes explicit the trade-off between the risk-tolerance

parameter p and the variance of the uncertainty: higher safety probability requires larger margins,

shrinking the feasible control set (see Remark 3.2.4).

3.2.2 Robust Safe Control Formulation

In this section, we develop a solution to Problem 3.

Let F̃ denote the estimated system dynamics, h̃, ∇h̃ the estimated barrier function

and its gradient, and let eF : Rn×(m+1) 7→ R≥0, eh : R 7→ R≥0, and e∇h : Rn 7→ R≥0 be
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(a) Pybullet Simulator (b) Probabilistic Trajectory

Figure 3.3. (a) is the Pybullet simulation environment where we conduct our experiments. (b) shows the
results in a region of an environment, where the probabilistic (p = 0.2, 0.4, 0.8, 0.99) controller and QP
controller both succeed. The ground-truth obstacle surface is shown in black while the estimated obstacles
is shown in orange.

associated error bounds. For convenience, for each x ∈ X , we denote DF (x) := F(x)− F̃(x),

dh(x) := h(x)− h̃(x) and d∇h(x) := ∇h(x)−∇h̃(x).

By (3.28) and (3.29), we have

∥DF (x)∥ ≤ eF (x), |dh(x)| ≤ eh(x), ∥d∇h(x)∥ ≤ e∇h(x). (3.43)

Using this notation, we can rewrite CBC(x,u) as

CBC(x,u) = [∇h(x)]⊤F(x)u+ αh(h(x))

= [∇h̃(x)]⊤F̃(x)u+ d⊤
∇h(x)F̃(x)u+ [∇h̃(x)]⊤DF (x)u

+ d⊤
∇h(x)DF (x)u+ αh(h̃(x) + dh(x)).

Let p̃(x) := F̃⊤(x)∇h̃(x). We group the error term in the expression for CBC(x,u) in the

variable dCBC(x,u) := CBC(x,u)− p̃(x)⊤u.
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Thus, CBC(x,u) ≥ 0 is satisfied if

min
DF ,d∇h,dh

CBC(x,u) = p̃(x)⊤u+ min
DF ,d∇h,dh

dCBC(x,u) ≥ 0.

Let q̃(x) := F̃⊤(x)∇V (x)+ [αV (V (x)) 0⊤
m]

⊤ and dCLC(x,u) := [∇V (x)]⊤DF (x)u, a robust

version of the stability constraint CLC(x,u) ≤ δ can be written as:

max
DF

CLC(x,u) = q̃(x)⊤u+max
DF

dCLC(x,u) ≤ δ. (3.44)

This leads us to the following robust reformulation of the original control synthesis problem

in (2.13),
min

u∈U ,δ∈R,l∈R
l

s.t. q̃(x)⊤u+max
DF

dCLC(x,u) ≤ δ

p̃(x)⊤u+ min
DF ,dh,d∇h

dCBC(x,u) ≥ 0

l + 1 ≥
√
∥2L(x)⊤(u− k̃(x))∥2 + (2

√
λδ)2 + (l − 1)2.

(3.45)

Note that we used the same approach as in the proof of Proposition 3.2.3 to reformulate the

original quadratic objective with a linear objective plus a SOC constraint. The second constraint in

(3.45) requires solving minDF ,dh,d∇h
dCBC(x,u) subject to (3.43). In general, this is a non-convex

constrained quadratic program which does not have a closed-form expression of the minimizer as

a function of u. Instead, we make the second constraint in (3.45) more conservative using the

Cauchy-Schwarz inequality, which leads to a convex SOCP, whose optimal solution is guaranteed

to be feasible for (3.45).

Proposition 3.2.5 (Robust CLF-CBF SOCP). Let F̃, h̃, ∇h̃ denote estimates of the system

dynamics and barrier function, with error bounds in (3.43). Then, the feasible set of the following
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SOCP is included in the feasible set of (3.45):

min
u∈U ,δ∈R,p∈R,q∈R,l∈R

l

s.t. δ − q̃(x)⊤u ≥ eF (x)∥∇V (x)∥∥u∥,

p ≥ e∇h(x)∥F̃(x)u∥,

q ≥
(
eF (x)∥∇h̃(x)∥+ e∇h(x)eF (x)

)
∥u∥,

[∇h̃(x)]⊤F̃(x)u+ αh(h̃(x)− eh(x)) ≥ p+ q,

l + 1 ≥
√
∥2L(x)⊤(u− k̃(x))∥2 + (2

√
λδ)2 + (l − 1)2 (3.46)

Proof. The stability constraint in (3.45) is reformulated using:

max
∥DF (x)∥≤eF (x)

dCLC(x,u) = eF (x)∥∇V (x)∥∥u∥.

For the safety constraint in (3.45), note that

min
DF ,dh,d∇h

dCBC(x,u) = min
DF ,d∇h

(
d⊤
∇h(x)F̃(x)u+ [∇h̃(x)]⊤DF (x)u+

d⊤
∇h(x)DF (x)u

)
+min

dh
αh(h̃(x) + dh(x)). (3.47)

Since eh(x) ≥ 0 and αh is an extended class K∞ function,

min
|dh(x)|≤eh(x)

αh(h̃(x) + dh(x))=αh(h̃(x)− eh(x)). (3.48)

Applying the Cauchy-Schwarz inequality on each term,

min
DF ,dh,d∇h

dCBC(x,u) ≥ −∥d∇h∥∥F̃(x)u∥ − ∥∇h̃(x)∥∥DF (x)u∥

− ∥d∇h(x)∥∥DF (x)u∥+ αh(h̃(x)− eh(x))
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≥ −e∇h(x)∥F̃(x)u∥ − eF (x)∥∇h̃(x)∥∥u∥ − e∇h(x)eF (x)∥u∥+ αh(h̃(x)− eh(x)).

In the last step, we minimized each term independently, so the lower bound is not tight. We write

the safety constraint as

e∇h(x)∥F̃(x)u∥+ (eF (x)∥∇h̃(x)∥+ e∇h(x)eF (x))∥u∥

≤ [∇h̃(x)]⊤F̃(x)u+ αh(h̃(x)− eh(x)). (3.49)

Constraints of the form ∥Az− a∥+ ∥Bz− b∥ ≤ c⊤z can be replaced by the set of constraints

∥Az−a∥ ≤ p, ∥Bz− b∥ ≤ q, p+ q ≤ c⊤z combined. Thus, (3.49) is equivalent to the second,

third, and fourth constraints in (3.46) together.

Proposition 3.2.5 shows that, despite the apparent nonconvexity of the robust reformulation

(3.45), the constraints can be upper bounded by convex inequalities, yielding a tractable SOCP.

Intuitively, the worst-case effect of dynamics error DF , barrier value error dh, and gradient error

d∇h can all be captured by linear terms in u scaled by their respective error bounds. The resulting

constraints enforce a safety margin that grows proportionally with the magnitudes of eF , eh, and

e∇h, effectively shrinking the feasible control set. This makes the controller conservative but

guarantees safety and stability under any admissible error realization.

Remark 3.2.6 (Effects of error bounds). If there are no errors in either the dynamics or the

barrier function (eF ≡ eh ≡ e∇h ≡ 0), then the robust CLF-CBF SOCP (3.46) reduces to a

CLF-CBF QP (2.13). If eF ≡ 0 while eh(x), e∇h(x) > 0, the result in Proposition 3.2.5 recovers

[101, Proposition 2]. As the error bounds eF , eh, e∇h increase, the feasible region of (3.46)

gets smaller and the optimal solution worsens. Also, note that the choice of kernel function,

KF (x,x) =
e2F (x)

c2(p)
I(m+1)n, reduces the inequality for stability in (3.40) to that in (3.46).

Compared to Proposition 3.2.3, which leverages variance information to trade risk against

performance, Proposition 3.2.5 removes this trade-off by requiring satisfaction for all admissible
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Table 3.1. Empirical SDF estimation error E and dropout-network SDF estimation error averaged across
8 object instances under different LiDAR measurement noise standard deviation σ.

LiDAR Noise σ SDF Empirical Error SDF Dropout Error
0.01 0.0173 0.0132
0.02 0.0288 0.0184
0.05 0.0463 0.0242

errors. As a result, the robust SOCP is particularly suited to safety-critical scenarios where

distributional assumptions are unreliable, but conservative error bounds are available. In practice,

the choice between probabilistic and robust formulations depends on whether one prefers less

conservatism with quantified risk or strict guarantees at the cost of performance.

3.3 Evaluation

In this section, we evaluate two key components: (1) the performance of our online CBF

construction, using either a neural CBF learned from LiDAR data (Sec. 3.1) or an analytic CBF

for ellipse–polygon environments (Sec. 3.1.2); and (2) the effectiveness of safe control synthesis

under uncertainty in autonomous navigation and 2D manipulator tasks. All experiments are

conducted in simulated environments containing obstacles that are a priori unknown to the robot.

3.3.1 Online CBF Estimation

The robot is equipped with a LiDAR scanner with a 270◦ field of view, 200 rays per

scan, 3 meter range, and zero-mean Gaussian measurement noise with standard deviation

σ ∈ {0.01, 0.02, 0.05}. The LiDAR scans are used to estimate the unsafe regions Oi in the

environment and construct a CBF constraint for each. We rely on the concept of signed distance

function (SDF) (e.g. Fig. 3.4b) to describe each Oi. The SDF function φi : R2 7→ R of set

Oi ⊆ R2 is

φi(y) :=


−d(y, ∂Oi), y ∈ Oi,

d(y, ∂Oi), y /∈ Oi,

(3.50)
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(a) Training data (b) Mean SDF (c) Variance (d) P(φ̃≤0)=0.95

Figure 3.4. Shape estimation with dropout neural network. (a) shows the training data. (b) shows the
estimated mean SDF results. The black heart curve shows the ground-truth obstacle boundary, while
colored regions are level-sets of the SDF estimate. The white region denotes the estimated obstacle
boundary. The blue (resp. red) region denotes negative (resp. positive) signed distance. In (c), the
variance of the SDF estimate is shown. In (d), we plot the estimated unsafe region with high probability,
where P(φ̃ ≤ 0) = 0.95.

where d denotes the Euclidean distance from a point y ∈ R2 and the set boundary ∂Oi. We

employ incremental training with replay memory (ITRM) [101, Sec. IV] to estimate an SDF φi

for each Oi from the LiDAR measurements. We use a 4-layer fully-connected neural network

with parameters θ and dropout layers to yield φ̃i(y;θ) with dropout rate 0.05 applied to each

512-neuron hidden layer.

Given y ∈ R2, we obtain the predictive SDF mean φ̂i(y) and standard deviation σ̂i(y)

by Monte-Carlo estimation with T = 20 stochastic forward passes through the dropout neural

network model. When the TurtleBot moves along a circle of radius 2 while the object is placed at

the center, we measure the accuracy of the online SDF method using the empirical SDF error,

Ei = 1
m

∑m
j=1 |φ̂i(yj)|, where {yj}mj=1 are m = 500 points uniformly sampled on the surface of

the object. In Fig. 3.4, we show the SDF estimation with measurement noise σ = 0.01.

Let z = [x, y] ∈ Z ⊂ R2 be the position part of x. To account for the fact that the

robot body is not a point mass, we subtract the robot radius ρ = 0.177 from each SDF estimate

when defining each mean CBF: h̃i(x) = φ̃i(z;θ) − ρ. For variance Kh(x,x) in Sec. 3.2.1,

we set Ki
h(x,x) = σ̂2

i (z). We also take ∇h̃i(x) = ∇φ̃i(z;θ) and compute Hx,x′Ki
h(x,x

′) by

Monte-Carlo estimation using double back-propagation. We set the worst case error bounds

eh(x), e∇h(x) in Sec. 3.2.2 as the 99.99% confidence bounds of a Gaussian random variable
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with standard deviation σ̂i(z). If the robot observes multiple obstacles in the environment, we

compute multiple CBFs h̃i(x) and their corresponding uncertainty, and add multiple CBCs to

(2.13), (3.40), (3.46) for safe control synthesis.

3.3.2 Safe Navigation

We evaluate safe navigation performance under different controller formulations and robot

shape models, followed by an extension to safe manipulation. All experiments are performed in

simulated environments containing obstacles unknown to the robot.

Navigation with Circular Robot Model.

We first consider a TurtleBot modeled as a circular robot and compare three controllers:

(1) the original CLF-CBF-QP (2.13) (assumes perfect estimates), (2) the proposed probabilistic

CLF-CBF-SOCP (3.40), and (3) the proposed robust CLF-CBF-SOCP (3.46). All controllers use

L(x) = diag([0, 10, 3]), k̃(x) = [1, vmax, 0]
⊤ with vmax = 0.65m/s, λ = 1000, αV (V (x)) =

2V (x), and αh(hi(x)) = hi(x).

Figures 3.5a and 3.5b show goal-reaching tasks with the CLF candidate V (x) =

(x− 2)2 + (y − 3)2 under two LiDAR noise levels. At σ = 0.01, all controllers succeed, with

the SOCP formulations slightly more conservative than QP. At σ = 0.02, estimation variance

increases and the QP controller collides with an obstacle, while both SOCP controllers avoid

collisions. The robust SOCP takes a detour on the right side of the round obstacle due to larger

error bounds making the left path infeasible.
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(a) Noise: σ = 0.01 (b) Noise: σ = 0.02

Figure 3.5. Navigation to a goal point under different LiDAR noise levels. The QP controller collides at
σ = 0.02, while both SOCP variants remain safe.

For safe trajectory tracking, we use the method from [101, Sec. VI] to construct a valid

CLF V (x) for path following. Table 3.2 reports success rates under different noise levels: the

QP controller’s success rate drops sharply with noise, while the robust and high-p probabilistic

controllers maintain near-perfect performance.

Table 3.2. Success rate of trajectory tracking across 10 environments (10 runs each) under varying LiDAR
noise σ.

LiDAR

Noise σ
QP

Probabilistic (p)
Robust

0.2 0.4 0.8

0.01 0.82 0.98 1.0 1.0 1.0

0.02 0.65 0.92 0.97 1.0 1.0

0.05 0.37 0.72 0.89 0.96 1.0

Figure 3.6 shows a case (environment 8, σ = 0.01) where QP fails but both SOCP

controllers remain safe. When obstacles lie near the reference path, robust SOCP keeps the

largest clearance, followed by probabilistic SOCP, then QP.

52



Figure 3.6. Trajectory tracking in environment 8 (σ = 0.01). QP collides, while both SOCP variants
avoid obstacles.

Table 3.3 quantifies tracking performance via Fréchet distance [101, Sec. VI] under

σ = 0.02. Robust SOCP is most conservative (largest distances), probabilistic SOCP offers a

tunable safety–performance trade-off via p, and QP achieves closest tracking but fails in several

environments.
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Table 3.3. Fréchet distance between the reference path and the robot trajectories generated by the
Probabilistic CLF-CBF-SOCP, Robust CLF-CBF-SOCP, and the CLF-CBF-QP controllers (smaller values
indicate larger trajectory similarity, the value in the parentheses indicates the success rates while values
without parentheses indicate the success rate is 1, and N/A indicates the robot collides with obstacles in all
10 realizations).

Env QP
Probabilistic

Robust
p = 0.2 p = 0.4 p = 0.8

1 0.337 0.338 0.343 0.363 0.357

2 0.378 0.408 0.404 0.432 0.485

3 0.372 0.398 0.412 0.457 0.538

4 0.416 0.438 0.427 0.473 0.515

5 0.395 0.418 0.412 0.483 0.572

6 0.385 (0.8) 0.371 0.378 0.392 0.424

7 0.462 (0.5) 0.502 0.546 0.593 0.737

8 0.535 (0.2) 0.588 0.612 0.673 0.814

9 N/A 0.756 (0.8) 0.887 (0.9) 0.926 1.016

10 N/A 0.905 (0.4) 0.937 (0.8) 1.046 1.224

Computation times per control step are 0.00863 s (QP), 0.0109 s (probabilistic SOCP),

and 0.0122 s (robust SOCP) on an Intel i7-9700K, confirming online feasibility.

Navigation with Polygon–Ellipse CBFs.

While the circular robot model is simple, it can be overly conservative in environments

where robot orientation matters. We extend our framework to an SE(2) CBF formulation for

rigid-body polygon robots interacting with elliptical obstacles.

Figure 3.8 compares navigation results for a triangular robot vs. its circular approximation

in a dynamic elliptical environment. The triangular robot successfully traverses a narrow passage

between two moving obstacles and reaches the goal without collision. The circular approximation

must take a longer route, showing that SE(2) CBFs enable less conservative maneuvers.
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Figure 3.7. Comparative analysis of the SE(2) and R2 signed distance functions for elliptical obstacles.
The cyan triangle represents the rigid-body robot, with its orientation varying across the sequence. The
importance of considering robot orientation in distance computations becomes evident: while the SE(2)
function accounts for this orientation, the R2 approximation treats the robot as an encapsulating circle
with radius 1. Level sets at distances 0.2 and 2 are depicted for both functions.

(a) Initial Pose (b) Time t = 1.66 sec (c) Time t = 4.12 sec (d) Final Pose (e) Circular Robot

Figure 3.8. Safe navigation in a dynamical elliptical environment. (a) shows the initial pose of the
triangular robot and the environment. (b) shows the triangular robot passing through the narrow space
between two moving ellipses. (c) shows the robot adjusts its pose to avoid the moving obstacle. (d) shows
the final pose of the robot that reaches the goal region. In (e), we plot the trajectory of navigating a circular
robot in the same environment.

Safe Manipulation.

We further apply the polygon–ellipse CBF formulation to a 3-joint planar manipulator

operating in a dynamic elliptical environment. The arm configuration is given by joint angles

θ = [θ̃1, θ̃2, θ̃3]
⊤ with joint rates ω = [ω1, ω2, ω3]

⊤ and dynamics

θ̇ = ω, |ωi| ≤ 3. (3.51)

Each link is modeled as a line segment of length Li with pose in SE(2) determined by the

forward kinematics; the overall arm shape is the union of all link shapes. The control Lyapunov
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function

V (θ) = (θ − θ∗)⊤Q(θ − θ∗)

drives the arm toward a desired joint configuration θ∗ corresponding to the goal end-effector

position. Safety is enforced via CBFs hi(θ) defined as the minimum SE(2) distance between

each link and the elliptical obstacles.

In Fig. 3.9, the arm begins in an extended pose and must reach the goal region while

avoiding three moving elliptical obstacles. Throughout the motion, the controller adjusts all

joints to maintain clearance, resulting in a smooth, collision-free trajectory of the end effector

(red) to the goal (green).

(a) Initial Pose (b) Time t = 4.12 sec (c) Time t = 4.92 sec (d) Time t = 6.28 sec (e) Final Pose

Figure 3.9. Safe stabilization of a 3-joint robot arm. The green circle denotes the goal region, and the
gray box denotes the base of the arm. The arm is shown in blue and the trajectory of its end-effector is
shown in red. The trajectories of the moving elliptical obstacles are shown in purple.

Chapter 3, in full, is a reprint of the material as it appears in Learning Barrier Functions

With Memory for Robust Safe Navigation, K. Long, C. Qian, J. Cortés, and N. Atanasov, IEEE

Robotics and Automation Letters, 2021; Safe Control Synthesis With Uncertain Dynamics

and Constraints, K. Long, V. Dhiman, M. Leok, J. Cortés, and N. Atanasov, IEEE Robotics

and Automation Letters, 2022; and Safe Stabilizing Control for Polygonal Robots in Dynamic

Elliptical Environments, K. Long, K. Tran, M. Leok, and N. Atanasov, American Control

Conference, 2024. The dissertation author was the primary researcher and author of these works.
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Chapter 4

Distributionally Robust Safety Filters for
Robot Control

Safe autonomous operation in uncertain environments remains one of the most challenging

problems in robotics. While probabilistic and robust formulations of safe control (Chapter

3) provide valuable theoretical foundations for handling uncertainty, they often suffer from

practical limitations that hinder their deployment in real-world systems. Traditional probabilistic

approaches require exact knowledge of uncertainty distributions, which are rarely available in

practice. Meanwhile, robust control methods rely on fixed worst-case bounds that can be overly

conservative or difficult to obtain for complex, multi-source uncertainties. These limitations

become particularly pronounced in realistic robotic systems, where uncertainty manifests through

multiple interconnected sources including localization errors, sensor noise, model mismatch,

actuation delays, and geometric and state estimations.

The complexity of modern robotic systems compounds these challenges. Consider a

manipulator operating in a cluttered workspace: uncertainty arises from vision-based object detec-

tion errors, kinematic calibration inaccuracies, and estimated collision geometry representations.

These uncertainties do not act in isolation, they interact and propagate through the control system

in ways that are difficult to predict or bound analytically. Ultimately, these combined effects

manifest within safety constraint formulations, particularly in control barrier functions (CBFs),

where their joint influence determines whether collision avoidance and other critical constraints
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are satisfied. While individual uncertainty sources can often be characterized separately through

careful system identification, obtaining reliable bounds or accurate probabilistic descriptions for

their combined effect in the final constraint expression remains a formidable challenge.

This fundamental difficulty motivates our adoption of distributionally robust optimization

(DRO), a principled framework that circumvents the need for exact uncertainty models by reasoning

directly over sets of plausible probability distributions. Rather than assuming knowledge of a

single “true” distribution or requiring explicit bounds for each uncertainty source, DRO enforces

safety constraints over an ambiguity set of distributions centered around empirically observed

data. This approach naturally accommodates the complex, interacting nature of real-world

uncertainties while providing meaningful probabilistic guarantees on constraint satisfaction.

Figure 4.1. System overview

Figure 4.1 provides an overview of our proposed framework, which integrates distribu-

tionally robust optimization with control barrier functions to create a unified approach for safe

control under uncertainty.

To address the limitations of existing uncertainty-aware formulations, this chapter

builds upon the mathematical foundations of DRO, leveraging its ability to operate directly

on sampled data without requiring explicit distributional assumptions. Our approach centers

on Wasserstein ambiguity sets [47, 71], which provide a principled and geometrically intuitive

means to capture distributional deviations under limited data availability. Unlike moment-
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based ambiguity sets that can be sensitive to outliers, or likelihood-based approaches that

require distributional assumptions, Wasserstein sets offer robust performance guarantees while

maintaining computational tractability. This formulation naturally accommodates uncertainty in

sensor measurements (such as LiDAR point cloud noise and camera calibration errors), estimation

errors from state filtering algorithms [43, 75], and perturbations in system dynamics, while

providing high-probability guarantees on safety constraint satisfaction.

The integration of accurate geometric representations presents both opportunities and

challenges for safe control synthesis. Traditional collision avoidance methods often rely on

simplistic geometric abstractions such as spherical or cylindrical bounding volumes, which

can introduce significant conservatism, particularly for manipulators operating in confined or

articulated workspaces. Recent advances in neural implicit representations offer a promising

alternative, enabling more expressive and compact modeling of complex robot and obstacle

geometries. Signed distance functions [81,91,100] and configuration-space distance functions [90]

have emerged as particularly powerful tools, providing differentiable geometric queries that

integrate seamlessly with gradient-based optimization methods.

However, the learned nature of neural geometric representations introduces new sources

of uncertainty that traditional robust control methods struggle to address explicitly. Neural

network approximation errors, training data bias, and generalization limitations create compound

uncertainty effects that are difficult to model analytically. This challenge further reinforces the

value of our distributionally robust approach, which can capture and reason about such complex

uncertainty interactions without requiring detailed characterization of each component.

This chapter synthesizes the research presented in [99, 104, 105], where we develop a

distributionally robust control barrier constraint formulation that accounts for uncertainties from

state estimation, system dynamics, sensor noise, and neural shape approximations. The central

idea is to reason directly over an ambiguity set of distributions consistent with observed data,

thereby avoiding the need to separately characterize or bound each uncertainty source. Despite

the generality of this formulation, the resulting safe control synthesis problem can be reformulated

59



(a) Mobile Robot with Complex Geometry. (b) 6-DoF Manipulator Navigation

Figure 4.2. Experimental demonstrations of the distributionally robust safety filter framework for a ground
mobile robot and a 6-DoF manipulator, both utilizing neural shape representations of their bodies.

as a convex quadratic program, ensuring real-time tractability on robotic platforms.

Building on these foundations, this chapter makes the following contributions:

1. Distributionally robust control barrier constraints: We propose a novel DRO for-

mulation of CBF constraints that enforces safety against an ambiguity set of probability

distributions centered on empirical data, rather than requiring exact knowledge of uncer-

tainty models or conservative worst-case bounds.

2. Integration with neural geometric representations: We extend the DRO-CBF formula-

tion to accommodate uncertainties arising from learned implicit shape models (e.g., neural

SDFs and configuration-space distance functions), enabling shape-aware safe control

despite neural approximation errors.

3. Convex quadratic program reformulation: We derive a tractable reformulation as a

convex quadratic program, enabling real-time implementation on robotic platforms.

4. Experimental validation on robots with complex geometry: We demonstrate the

proposed DRO safety filter on both a ground mobile robot and a 6-DoF manipulator,

each leveraging neural shape representations (Fig. 4.2), showing robust safe control under

uncertainty in cluttered environments.

In this chapter, we consider
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Problem 4. Consider a robotic system with control-affine dynamics given by (2.5), operating in

an uncertain environment and equipped with onboard sensors (e.g., LiDAR, RGB-D cameras).

Design a control policy that drives the system to a desired goal state xG ∈ X while ensuring

safety constraints of the form

B(x(t)) ⊂ F(t), ∀ t ≥ 0,

where B(x(t)) denotes the robot body at state x(t) and F(t) the estimated free workspace at time

t. The policy must account for uncertainties arising from sensing, state estimation, and model

mismatch, and should apply across different robot types (e.g., mobile robots and manipulators).

4.1 Distributionally Robust Safe Control

In this section, we present a distributionally robust control barrier function (DR-CBF)

formulation that enables real-time safety guarantees in cluttered and dynamic environments by

utilizing sensor data directly. This formulation is applicable to general control-affine systems

(2.5).

We consider a CBF h(x, t) with super zero-level set C(t) = {x ∈ X | h(x, t) ≥ 0} that

satisfies

C(t) ⊆ {x ∈ X | B(x(t)) ⊆ F(t)},

where B(x(t)) represents the robot’s body at state x(t), and F(t) is the free space at time t. This

establishes a connection between the CBF h and the environment geometry. To develop the

DR-CBF formulation, we make the following assumption on the unknown CBF.

Assumption 4.1.1. The CBF h has a uniform relative degree of 1 with respect to the system

dynamics (2.5), i.e., the time derivative of h(x, t) along (2.5) depends explicitly on the control

input u.

Under Assumption 4.1.1, we can write the control barrier constraint associated with
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h(x, t) as:

CBC(x,u, t) = [∇xh(x, t)]
⊤F(x)u+

∂h(x, t)

∂t
+ αh(h(x, t)) (4.1)

= [∇xh(x, t)
⊤F(x), αh(h(x, t)),

∂h(x, t)

∂t
]︸ ︷︷ ︸

ξ⊤(x,t)


u

1

1

 ≥ 0,

where we define an uncertainty vector ξ(x, t) ∈ Rm+3, containing the elements of the time

derivative of the barrier function, for each (x, t) ∈ X × R.

Since the environment is unknown and both the sensor measurements and the robot state

estimates are noisy, ξ cannot be determined exactly.

Our formulation addresses uncertainties arising from both the barrier function h and the

state estimations x. Unlike existing robust or probabilistic CBF approaches, which often focus

on uncertainties in system dynamics [21, 28, 34, 40, 98, 143], few works tackle the challenges

posed by state estimation errors. This stems from the nonlinearity of the dynamics model F and

the barrier function h, which makes it difficult to propagate state estimation errors in the control

barrier constraint (CBC) in (4.1).

Our formulation addresses this challenge by leveraging the power of distributionally

robust optimization. Instead of explicitly propagating state estimation errors through the

system dynamics and barrier functions, we assume access to M state samples {xj}Mj=1 from a

state estimation algorithm. These samples can be obtained, for example, from the Gaussian

distributions provided by a Kalman filter [75], particles generated by a particle filter [43], or

a graph-based localization algorithm [52]. The state samples, combined with estimates of h

(e.g., obtained directly from the distance measurements η), can be directly used to construct

samples of the uncertainty vector {ξi}Ni=1, as detailed in [105]. By managing uncertainties in ξ

using distributionally robust optimization, we ensure the satisfaction of constraint (4.1) without

requiring explicit error propagation.
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Before introducing the control synthesis formulation, we review the preliminaries of

chance constraints and distributionally robust optimization.

4.1.1 Chance Constraints and Distributionally Robust Optimization

Consider a random vector ξ with (unknown) distribution P∗ supported on the set Ξ ⊆ Rk.

Let G : Rm × Ξ → R define an inequality constraint G(u, ξ) ≤ 0 (e.g., the CBC in (4.1)).

Consider, then, the chance-constrained program,

min
u∈Rm

c(u),

s.t. P∗(G(u, ξ) ≤ 0) ≥ 1− ϵ,
(4.2)

where c : Rm 7→ R is a convex objective function (e.g., the objective function in (2.13)) and

ϵ ∈ (0, 1) denotes a user-specified risk tolerance. Generally, the chance constraint in (4.2) leads

to a non-convex feasible set. To address this, [112] propose a convex conditional value-at-risk

(CVaR) approximation of the original chance constraint.

Value-at-risk (VaR) at confidence level 1− ϵ for ϵ ∈ (0, 1) is defined as VaRPq

1−ϵ(Q) :=

infs∈R{s | Pq(Q ≤ s) ≥ 1− ϵ} for a random variable Q with distribution Pq. As VaR does not

provide information about the right tail of the distribution and leads to intractable optimization in

general, one can employ CVaR instead, defined as CVaRPq

1−ϵ(Q) = EPq [Q | Q ≥ VaRPq

1−ϵ(Q)].

The resulting constraint

CVaRP∗

1−ϵ(G(u, ξ)) ≤ 0 (4.3)

creates a convex feasible set, which is a subset of the feasible set in the original chance-constrained

problem (4.2). Additionally, CVaR can be written as the following convex program [126]:

CVaRP∗

1−ϵ(G(u, ξ)) := inf
s∈R

[ϵ−1EP∗ [(G(u, ξ) + s)+]− s]. (4.4)
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The formulations in (4.2) and (4.3) require knowledge of P∗ to be utilized. However, in

many robotics applications, usually only samples of the uncertainty ξ are available (e.g., obtained

from LiDAR distance measurements). This motivates us to consider distributionally robust

formulations [47, 147].

Assuming finitely many samples {ξi}i∈[N ] from the true distribution of P∗ are available,

we first describe a way of constructing an ambiguity set of distributions that agree with the

empirical distribution. Let Pp(Ξ) ⊆ P(Ξ) be the set of Borel probability measures with finite

p-th moment with p ≥ 1. The p-Wasserstein distance between two probability measures µ, ν in

Pp(Ξ) is defined in :

Wp(µ, ν) :=

(
inf

β∈Q(µ,ν)

[∫
Ξ×Ξ

η(ξ, ξ′)pdβ(ξ, ξ′)
]) 1

p

, (4.5)

where Q(µ, ν) denotes the collection of all measures on Ξ× Ξ with marginals µ and ν on the

first and second factors, and η denotes the metric in the space Ξ. Throughout the paper, we

take η(ξ, ξ′) = ∥ξ − ξ′∥1 and consider the ambiguity set corresponding to the 1-Wasserstein

distance. We denote by PN := 1
N

∑N
i=1 δξi the discrete empirical distribution of the available

samples {ξi}i∈[N ], and define an ambiguity set,Mr
N := {µ ∈ Pp(Ξ) | Wp(µ,PN) ≤ r}, as a

ball of distributions with radius r centered at PN .

Remark 4.1.2. (Choice of Wasserstein ball radius): There is a connection between the sample

size N and the Wasserstein radius r for constructing the ambiguity setMr
N . A distribution P is

light-tailed if there exists an exponent ρ such that A := EP[exp ∥ξ∥ρ] =
∫
Ξ
exp ∥ξ∥ρP(dξ) <∞.

If the true distribution P∗ is light-tailed, the choice of r = rN(ϵ̄) given in [47, Theorem 3.5] is

rN(ϵ̄) =


( log(c1ϵ̄

−1)
c2N

)
1

max{k,2} if N ≥ log(c1ϵ̄−1)
c2

,

( log(c1ϵ̄
−1)

c2N
)
1
ρ else,

(4.6)

where c1, c2 are positive constants that depend on ρ,A and k, ensures that the ambiguity ball
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Figure 4.3. Wasserstein ambiguity set illustration. The figure shows the relationship between the samples,
empirical distribution, true distribution, and the Wasserstein ambiguity set. The blue squares represent
the available samples from the true distribution (yellow dot), which form the empirical distribution (red
dot). The Wasserstein ambiguity set (green region) is constructed as a ball of distributions centered at the
empirical distribution, with a radius r that depends on the sample size and the desired confidence level.
The ambiguity set aims to contain the true distribution with high probability.

MrN (ϵ̄)
N contains P∗ with probability at least 1− ϵ̄. •

Fig. 4.3 provides an illustration of the Wasserstein ambiguity set and its relation to the

samples, the empirical distribution, and the true distribution.

4.1.2 Distributionally Robust Safety Constraint

Consistently with our exposition of DRO in the previous section, we make the following

assumption.

Assumption 4.1.3. At each (x, t) ∈ X × R, N samples of the vector ξ in (4.1) can be obtained,

denoted by {ξi}i∈[N ].

The samples {ξi}i∈[N ] can be obtained using sensor measurements and state estimation

(we discuss this in detail in Sec. 4.2). In many robotic systems, sensing and state estimation

may operate at lower frequencies than the control loop. For example, LiDAR measurements or
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SLAM-based localization may provide updates at about 10 Hz, while the control loop may require

computations at 50 Hz. Our DR-CBF formulation addresses this challenge by incorporating

samples of ξ derived from potentially delayed or uncertain sensor data and state estimations.

By accounting for both the asynchrony and uncertainty inherent in sensing and estimation, our

approach ensures probabilistic safe performance under realistic conditions.

Inspired by the CLF-CBF QP formulation in (2.13), we consider the following distribu-

tionally robust formulation to ensure safety with high probability:

(u(x, t), δ) = argmin
u∈Rm,δ∈R

∥u− k(x)∥2 + λδ2,

s.t. CLC(x,u) ≤ δ, (4.7a)

inf
P∈Mr

N

P(CBC(x,u, ξ)) ≥ 0) ≥ 1− ϵ, (4.7b)

whereMr
N denotes the ambiguity set with radius r around the empirical distribution PN . The

explicit time dependency of u on t stems from the random vector ξ(x, t) in the CBF constraint.

The formulation in (4.7) addresses the inherent uncertainty in the safety constraint without

assuming a specific probabilistic model for ξ. The Wasserstein radius r defines the acceptable

deviation of the true distribution of ξ from the empirical distribution PN .

If a controller u∗(x, t) satisfies (4.7b), the following result ensures that the closed-loop

system satisfies a chance constraint under the true distribution.

Lemma 4.1.4. (Chance-constraint satisfaction under the true distribution): Assume the

distribution P∗ of ξ is light-tailed and the Wasserstein radius rN(ϵ̄) is set according to (4.6). If

the controller u∗(x, t) satisfies (4.7b) with r = rN(ϵ̄), then

P∗(CBC(x,u∗(x, t), ξ)) ≥ 0) ≥ (1− ϵ)(1− ϵ̄). (4.8)

Proof. Consider the events A :={P∗ ∈ MrN (ϵ̄)
N } and B :={CBC(x,u∗(x, t), ξ)) ≥ 0}. From
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[47, Theorem 3.4], we have P∗(A) ≥ 1− ϵ̄. From (4.7b), we have that

inf
P∈MrN (ϵ̄)

N

P(B) ≥ 1− ϵ. (4.9)

Now, consider the probability of the event B under the true distribution P∗:

P∗(B) ≥ P∗(B ∩ A) = P∗(B|A)P∗(A) (4.10)

≥

(
inf

P∈MrN (ϵ̄)

N

P(B)

)
P∗(A) ≥ (1− ϵ)(1− ϵ̄).

Our previous work [97] presents a similar result but for a CLF in the context of

stabilization. According to Lemma 4.1.4, the safety of the closed-loop system is guaranteed with

high probability. However, the optimization problem in (4.7) is intractable [47, 71] due to the

infimum over the Wasserstein ambiguity set. In Sec. 4.1.3, we discuss our approach to identify

tractable reformulations of (4.7) and facilitate online safe control synthesis.

Building on the marginal safety guarantees in Lemma. 4.1.4, we also show that our

formulation admits a Probably Approximately Correct (PAC)–style conditional guarantee [140],

ensuring that with high confidence over the noisy observations, the controller satisfies the desired

safety probability under the true distribution.

Lemma 4.1.5. (Calibration–conditional DRO safety guarantee): Assume P∗ is light-tailed

and choose the radius rN(ϵ̄) as in (4.6). If the control law u∗(x, t) satisfies (4.7b) with r = rN(ϵ̄),

then

PN
(
P∗(CBC(x,u∗(x, t), ξ) ≥ 0

)
≥ 1− ϵ

)
≥ 1− ϵ̄.

Unlike the marginal guarantee in Lemma 4.1.4, which only ensures average-case safety

across sampled data, Lemma 4.1.5 provides a conditional guarantee that holds with high

probability for the specific data realization. This stronger result is important for practical
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deployment, as it ensures that the controller is not only safe on average but also reliable given the

particular noisy observations available.

4.1.3 Tractable Convex Reformulation

Next, we demonstrate how the samples {ξi}i∈[N ] from Assumption 4.1.3 can be used to

obtain a tractable reformulation of (4.7).

Proposition 4.1.6. (Distributionally robust safe control synthesis): Given samples {ξi}i∈[N ]

of ξ as in (4.1), if (u∗, δ∗, s∗, {β∗
i }i∈[N ]) is a solution to the quadratic program:

min
u∈Rm,δ∈R,s∈R,βi∈R

∥u− k(x)∥2 + λδ2, (4.11)

s.t. CLC(x,u) ≤ δ,

r∥u∥∞ ≤ sϵ− 1

N

N∑
i=1

βi,

βi≥s−[u 1 1]⊤ξi, βi≥0, ∀i ∈ [N ],

then (u∗, δ∗) is also a solution to the distributionally robust chance-constrained program in (4.7).

Proof. The safety constraint (4.7b) is equivalent to supP∈Mr
N
P(−CBC(x,u, ξ) ≥ 0) ≤ ϵ. Using

the CVaR approximation of the chance constraint (2.16), we obtain a convex conservative

approximation of (4.7b):

sup
P∈Mr

N

CVaRP
1−ϵ(−CBC(x,u, ξ)) ≤ 0. (4.12)

From (4.4), this is equivalent to

sup
P∈Mr

N

inf
s∈R

[
1

ϵ
EP[(−CBC(x,u, ξ) + s)+]− s] ≤ 0. (4.13)

Based on [71, Lemma V.8] and [47, Theorem 6.3], with the 1-Wasserstein distance, the following
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inequality is a sufficient condition for (4.13) to hold:

rL(u)+inf
s∈R

[
1

N

N∑
i=1

(−CBC(x,u, ξi) + s)+ − sϵ

]
≤0 (4.14)

where L(u) is the Lipschitz constant of −CBC(x,u, ξ) in ξ. Now, from (4.1), we have

CBC(x,u, ξ) = [u 1 1]⊤ξ. Therefore, we can define the convex function L : Rm 7→ R>0 by

L(u) = ∥[u 1 1]⊤∥∞ = max{1, ∥u∥∞} = ∥u∥∞ (4.15)

The function ξ 7→ −CBC(x,u, ξ) is Lipschitz in ξ with constant L(u). This is because the

Lipschitz constant of a differentiable affine function equals the dual norm of its gradient, and the

dual norm of the L1 norm is the L∞ norm. Thus, the following is a conservative approximation

of (4.7),

min
u∈Rm,δ∈R

∥u− k(x)∥2 + λδ2, (4.16)

s.t. CLC(x,u) ≤ δ,

rL(u)+inf
s∈R

[
1

N

N∑
i=1

(−CBC(x,u, ξi) + s)+ − sϵ

]
≤0.

Lastly, as shown in [104, Proposition IV.1], the bi-level optimization in (4.16) can be rewritten

as (4.11).

Formally, the safe set C(t) is defined by a single CBF h(x, t), but its value, gradient, and

time derivative (defining ξ(x, t)) are not directly known in practice. By leveraging observations

of ξ derived from sensor measurements and state estimates, and applying Proposition 4.1.6, we

are able to synthesize safe controllers with distributionally robust guarantees. Due to the convex

reformulation of (4.7b), our approach inherently introduces some conservatism. However, in

practice, this conservatism can be effectively managed by tuning the Wasserstein radius r and
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the safety probability ϵ. These parameters provide flexibility to adapt the formulation based on

specific application requirements, sensor capabilities, and state estimation errors.

The Lipschitz continuity and regularity of distributionally robust controllers are charac-

terized in [108]. Together with Lemma 4.1.4, this enables safe robot control with point-wise

probabilistic guarantees in unknown dynamic environments.

Remark 4.1.7. (Uncertainty in System Dynamics): We have assumed that there is no uncertainty

in the system dynamics F to simplify the presentation in Sec. 4.1.3. However, our approach can

be extended if this is not the case as long as samples of F(x) are available. These samples can be

combined with samples of robot state and h(x, t) to construct the uncertainty vector {ξi}Ni=1 and

ensure the validity of Proposition 4.1.6. •

4.2 Application to Robot Navigation

This section demonstrates the practical application of our distributionally robust safety

filter framework to autonomous robot navigation. We focus on differential-drive mobile robots

operating in unknown and dynamic environments, where the robot must rely solely on onboard

sensor measurements to maintain safety while tracking planned trajectories. The key challenge

lies in handling the compound uncertainties arising from sensor noise, localization errors, and

dynamic obstacles without requiring explicit probabilistic models or conservative worst-case

bounds.

Figure 4.4 illustrates the key components of our navigation framework, which integrates

path-following control with sensor-based safety constraints through a unified distributionally

robust optimization formulation.
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(a) CLF-based path following with dynamic reference
point (yellow) along planned trajectory.

(b) Robot sensing environment with LiDAR. Red trian-
gles indicate boundary points used for DR-CBF sam-
pling.

Figure 4.4. Navigation system overview showing (a) Control Lyapunov Function-based path tracking with
dynamic goal adjustment and (b) sensor-based distributionally robust control barrier function construction
using LiDAR measurements for collision avoidance.

4.2.1 Robot Dynamics and Path Following

We consider a differential-drive robot with state x = [x, y, θ]⊤ ∈ X ⊆ R2 × [−π, π),

control input u = [v, ω]⊤ ∈ U ⊂ R2, and dynamics:

ẋ =


cos(θ) 0

sin(θ) 0

0 1


v
ω

 , (4.17)

where v and ω represent linear and angular velocities, respectively. The position projection

function is ϕ(x) = [x, y]⊤.

For path following, we employ a Control Lyapunov Function (CLF) approach with a

moving reference point along the planned path γ(s), where s ∈ [0, 1] parameterizes the path.
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Following the reference governor methodology, we introduce scalar dynamics:

ṡ =
k

1 + ∥ϕ(x)− γ(s)∥
(1− sζ), (4.18)

where k > 0 controls the reference progression speed, and ζ ∈ N ensures s approaches but never

exceeds 1.

The CLF is constructed to stabilize the robot to the moving reference point γ(s):

V (x, s) =
1

2

(
kv∥γ(s)− ϕ(x)∥2 + kωatan2(e⊥v , ev)2

)
, (4.19)

where kv, kω > 0 are control gains, and the error terms are:

ev =

cos θ
sin θ


⊤

(γ(s)− ϕ(x)), (4.20)

e⊥v =

− sin θ

cos θ


⊤

(γ(s)− ϕ(x)). (4.21)

This construction ensures asymptotic convergence to the planned path while accommo-

dating the underactuated nature of the differential-drive system.

4.2.2 Sensor-Based Safety Constraints

The robot employs a 360° LiDAR sensor to perceive its environment and construct safety

constraints. Rather than building explicit environment maps, our approach directly uses range

measurements to formulate distributionally robust control barrier constraints.
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Signed Distance Function as Control Barrier Function

For a robot with shape B0 centered at the origin, the oriented robot body at state x is

given by:

B(x) = {R(x)p+ ϕ(x) : p ∈ B0}, (4.22)

where R(x) ∈ SO(2) is the rotation matrix corresponding to orientation θ.

The safety constraint is formulated using the distance between the robot body and obstacle

set O(t):

h(x, t) = d(B(x),O(t)) = inf
q∈O(t)

dB0

(
R(x)⊤(q− ϕ(x))

)
, (4.23)

where dB0(·) is the signed distance function to the robot shape.

Since the obstacle set O(t) is unknown and time-varying, this function is generally

non-smooth due to both the properties of the signed distance function and the infimum operation.

We address this using nonsmooth control barrier function theory, where the barrier constraint is

expressed in terms of the Clarke generalized gradient.

Distributionally Robust CBF Sample Selection

Rather than computing h(x, t) exactly, we construct CBF samples directly from LiDAR

measurements. At each time step, the robot collectsK range measurements {ηi}Ki=1 corresponding

to different angular directions. Each measurement yields a detected point qi(t) ∈ R2 in the

global frame.

To account for both sensor noise and localization uncertainty, we consider M samples

of the robot’s estimated pose {x(j)}Mj=1. For each pose sample, we transform the LiDAR

measurements to obtain a comprehensive set of obstacle points:

P(t) = {q(j)
i (t) : i = 1, . . . , K; j = 1, . . . ,M}. (4.24)
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From this aggregated data, we select the N most critical samples based on the criterion:

∂

∂t
dB0

(
R(x)⊤(qi(t)− ϕ(x))

)
+ αh

(
dB0

(
R(x)⊤(qi(t)− ϕ(x))

))
, (4.25)

where αh is a class-K∞ function. This criterion identifies points where safety constraints are

most critical, considering both current proximity and relative motion.

Each selected sample yields a constraint vector:

ξi = [F⊤(x)∇xhi(x, t), αh(hi(x, t)),
∂hi(x, t)

∂t
], (4.26)

where hi(x, t) = dB0(R(x)⊤(qi(t) − ϕ(x))) and F(x) = [f(x),g(x)] combines the drift and

input matrices from the robot dynamics.

The complete control synthesis problem combines the CLF constraint for path following

with the DR-CBF constraints for safety. Using the tractable reformulation from Sec 4.1.3, this

becomes a quadratic program and enables real-time control synthesis while providing formal

guarantees on both path-following performance and collision avoidance under uncertainty.

4.2.3 Simulated and Experimental Validation

In this section, we evaluate our CLF-DR-CBF QP formulation through several simulation

and real-world experiments.

We compare our approach with two other safe control strategies, the nominal CLF-CBF

QP in (2.13) and a CLF-Gaussian Process (GP)-CBF second-order cone program (SOCP) [98].

The nominal CLF-CBF QP approach utilizes the closest LiDAR point to define a single CBF

h(x, t) and its gradients at each time step. In the CLF-GP-CBF SOCP method, a real-time

GP-SDF model [146] of the unknown environment is constructed using LiDAR data, from which

the CBF, its gradient, and uncertainty information are determined. While the GP-SDF mapping

process contributes to safety by continuously updating the environment representation, it also
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(a) Static environment (b) Dynamic environment

Figure 4.5. Simulated environments in Gazebo.

incurs computational overhead due to the real-time update of the GP-SDF model. For a fair

evaluation, we solve each of the optimization programs to generate control signals using the

Interior Point Optimizer through the CasADi framework [11].

In the following simulations and experiments, a consistent set of parameters is utilized to

ensure reproducibility of the results. The linear velocity is constrained in [−1.2, 1.2] m/s and the

angular velocity is limited within [−1, 1] rad/s. The nominal control input k(x) is set to [1.2, 0]⊤,

directing the robot to move forward at 1.2 m/s. While we use a constant nominal controller, note

that our formulation supports more complex, state-dependent nominal controllers. The scaling

factor is λ = 50. Table 4.1 summarizes other parameter values.

Table 4.1. Simulation and experiment parameters. The class K function αV for CLF and the class K∞ for
CBF are assumed to be linear. The parameters kv and kω are control gains for linear and angular velocities,
respectively, ϵ the risk tolerance of the CLF-DR-CBF QP formulation, and N the DR-CBF sample size.

Parameters αV αh kv kω ϵ N
Value 1.0 1.5 0.05 0.4 0.1 5

In all results, the A∗ algorithm is employed for path planning, operating at a frequency of
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5 Hz. Our CLF-DR-CBF QP formulation is used for real-time safe navigation, running at 50 Hz.

Simulated Static Environments

Table 4.2. Performance metrics for static environments under varying LiDAR and localization noise. The
metrics include stuck rate and collision rate out of 1000 trials and tracking error (m) (mean ± std). The
stuck rate reflects cases of infeasibility or the robot being trapped in local optima. The robot starts from
the origin, and goals are placed at least 10 meters away in Figure 4.5a.

LiDAR Noise Localization Noise Method Stuck Rate Collision Rate Tracking Error (m)

σ = 0.001

σ = 0.01
CLF-DR-CBF QP 0.0 0.0 1.33 ± 0.19

CLF-GP-CBF SOCP 0.2 0.0 1.38 ± 0.31
Nominal CLF-CBF QP 0.0 0.2 1.26 ± 0.20

σ = 0.05
CLF-DR-CBF QP 0.1 0.0 1.88 ± 0.35

CLF-GP-CBF SOCP 0.3 15.8 2.16 ± 0.47
Nominal CLF-CBF QP 0.1 15.5 1.92 ± 0.34

σ = 0.05

σ = 0.01
CLF-DR-CBF QP 0.0 0.0 1.77 ± 0.38

CLF-GP-CBF SOCP 25.1 0.2 1.97 ± 0.52
Nominal CLF-CBF QP 1.7 4.4 1.82 ± 0.41

σ = 0.05
CLF-DR-CBF QP 1.8 0.7 2.22 ± 0.57

CLF-GP-CBF SOCP 31.3 13.9 2.58 ± 0.78
Nominal CLF-CBF QP 3.3 25.8 2.23 ± 0.59

σ = 0.1

σ = 0.01
CLF-DR-CBF QP 1.2 0.0 2.31 ± 0.66

CLF-GP-CBF SOCP 60.7 0.0 2.55 ± 0.79
Nominal CLF-CBF QP 4.7 7.7 2.52 ± 0.72

σ = 0.05
CLF-DR-CBF QP 6.6 1.8 2.61 ± 0.75

CLF-GP-CBF SOCP 65.4 22.0 2.78 ± 0.91
Nominal CLF-CBF QP 8.9 58.3 2.55 ± 0.69

We evaluate the performance of our CLF-DR-CBF QP formulation in static environments

simulated in Gazebo (Fig. 4.5a), comparing it with two baseline approaches: Nominal CLF-CBF

QP and CLF-GP-CBF SOCP [98].

Hypothesis: Our CLF-DR-CBF QP formulation ensures robust and safe navigation under

varying levels of sensor and localization noise. Compared to baseline methods, our approach

should achieve lower failure rates (stuck and collision) and demonstrate superior adaptability to

noise conditions without compromising computational efficiency.

Setup: The simulations are conducted in a static Gazebo environment where the robot

is tasked to achieve a predefined goal while avoiding obstacles. Gaussian noise with standard

deviation σ (ranging from 0.001 to 0.1) is added to the LiDAR measurements, and localization

noise with σ values up to 0.05 is introduced. For each noise level, 1000 trials are conducted with
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randomly placed goal locations at least 10 meters away from the robot’s starting position. The

evaluation metrics include stuck rate, collision rate, and average tracking error (mean ± std), as

summarized in Table 4.2.

The stuck rate and collision rate together determine the success rate, representing the

percentage of trials where the robot successfully reaches the goal without safety violations. The

stuck rate captures two failure modes. First, the optimization program may become infeasible

due to large uncertainties, particularly in the GP-CBF method, where the GP-SDF map’s high

variance at large LiDAR noise levels often renders the SOCP problem infeasible. Second, the

robot may become trapped in a corner, unable to make further progress toward the goal.

Table 4.3. Computation time comparison between different control approaches (in milliseconds). The
values represent the mean ± standard deviation of the computation time along the robot trajectory. The
total computation time for each method is the sum of the GP map training time (if applicable), inference
time, and control synthesis solver time. The CLF-DR-CBF QP and Nominal CLF-CBF QP methods have
similar total computation time, as they do not require map updates. For these two methods, the inference
time refers to processing the LiDAR data as CBF samples and corresponding gradients. The CLF-GP-CBF
SOCP method has the highest total computation time due to the additional overhead of GP map training.

Method Map Training Inference Solver Total Time
CLF-DR-CBF QP 0 0.2 7.1 ± 2.2 7.3 ± 2.2
CLF-GP-CBF SOCP 8.6 ± 3.1 0.3 9.6 ± 2.8 18.5 ± 5.9
Nominal CLF-CBF QP 0 0.2 6.4 ± 2.3 6.6 ± 2.3

Results and discussion: The results in Table 4.2 highlight the robustness of the CLF-

DR-CBF QP method, which consistently achieves low stuck and collision rates, even under high

noise levels. In contrast, the GP-CBF and Nominal CLF-CBF QP methods exhibit performance

degradation in challenging noise conditions.

As localization noise increases, the two baseline methods are more prone to collisions.

This is because their formulations do not explicitly account for uncertainties in the robot state

estimation. Our CLF-DR-CBF QP method remains robust by explicitly addressing localization

uncertainties in its formulation. Similarly, at higher LiDAR noise levels, the GP-CBF method

struggles due to significant variance in the GP-SDF estimation, often rendering its optimization

program infeasible. The CLF-DR-CBF QP method, by directly using LiDAR measurements and
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incorporating distributionally robust constraints, avoids reliance on explicit map construction,

exhibiting a higher probability of reliable performance at higher noise levels. Table 4.3 highlights

the computational efficiency of the proposed method. The CLF-DR-CBF QP formulation

achieves computation times comparable to the Nominal CLF-CBF QP method while significantly

outperforming the GP-CBF method. This advantage stems from the CLF-DR-CBF QP method’s

direct use of LiDAR measurements without requiring computationally expensive GP map

construction.

Overall, these results demonstrate the robustness and efficiency of the proposed CLF-

DR-CBF QP formulation. By directly handling noisy sensor data and avoiding reliance on

explicit map reconstruction, the method effectively balances computational efficiency and robust

safety, making it suitable for real-world applications where sensing noise, localization noise, and

computational constraints are significant challenges.

Simulated Dynamic Environments

Table 4.4. Performance metrics for dynamic environments over 1000 trials. The metrics include success
rate, stuck rate, collision rate, and task completion time (mean ± std). The CLF-DR-CBF QP outperforms
both baselines in terms of success rate and collision avoidance, demonstrating its robustness in dynamic
settings.

Method Success (%) Stuck (%) Collision (%) Time (s)
CLF-DR-CBF QP 93.2 5.1 1.7 10.7± 2.2
CLF-GP-CBF SOCP 60.5 36.3 3.2 13.6± 2.9
Nominal CLF-CBF QP 61.7 8.5 29.8 10.1± 2.1
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(a) Defensive Maneuver (b) Resuming Tracking (c) Wait Pedestrian (d) Task Completion

Figure 4.6. Snapshots showing safe robot navigation in a simulated dynamic environment with three
pedestrians, as depicted in Fig. 4.5b. The ground-truth static environment (e.g., walls, table base) is
plotted in black. Each pedestrian is represented by a light green circle, with trajectory over the past second
and current velocity also displayed. (a) At t = 3.4s, the robot adjusts its trajectory due to an approaching
pedestrian, adopting a defensive maneuver by rotating left (−1 rad/s) and moving backwards (−0.49m/s).
(b) By t = 5.2s, as the pedestrian clears, the robot accelerates forward (0.89m/s) to track its planned path
towards the first waypoint. (c) At t = 22.8s, facing another pedestrian crossing its planned path, the robot
stops (−0.02m/s) to allow the pedestrian to pass. (d) The complete trajectory at t = 25.6s shows the robot
successfully navigated to two waypoints and the final goal, ensuring safety in a dynamically changing
environment.

The dynamic environment simulations are conducted in Gazebo (cf. Fig. 4.5b), designed

to mimic real-world scenarios with pedestrians modeled using the social force model [67, 111].

Hypothesis: Our CLF-DR-CBF QP approach will outperform baseline methods in

handling time-varying constraints under noisy conditions. Specifically, we expect our method

to achieve higher success rates, lower collision rates, and efficient task completion times, due

to its ability to incorporate sensor noise and localization uncertainty directly into the control

formulation.

Setup: The robot starts at (0, 0) with an initial orientation of 0◦, and the goal locations

are randomly placed at least 6 meters away. Pedestrians are also randomly positioned in the

environment, with velocities bounded by B = 1 m/s. Both the static and dynamic elements of
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the environment are unknown, and the robot relies on noisy LiDAR measurements (Gaussian

noise with σ = 0.05) for collision avoidance. In all simulations below, the A∗ planning algorithm

operates independently of the pedestrian motion, and the real-time pedestrian avoidance relies on

our CLF-DR-CBF QP formulation (or the two baseline approaches). We conducted 1000 trials

for each method, measuring metrics such as success rate, stuck rate, collision rate, and average

task completion time. Success is defined as reaching the goal while maintaining safety, while a

trial is considered stuck if the robot fails to reach the goal within 20 seconds.

Results and discussion: Table 4.4 summarizes the quantitative results. The proposed

CLF-DR-CBF QP approach achieves the highest success rate (93.2%) and the lowest collision rate

(1.7%) among the three methods. By directly handling sensor noise through its distributionally

robust formulation, the CLF-DR-CBF QP method ensures safety while maintaining efficient task

completion times. The GP-CBF method exhibits a lower success rate and higher stuck rate due to

its reliance on the GP-SDF map, which becomes computationally expensive and less reliable in

dynamic environments. The Nominal CLF-CBF QP approach suffers from the highest collision

rate (29.8%), highlighting its limitations in handling dynamic obstacles with sensor noise.

We next present some qualitative results in Fig. 4.6 in the same dynamic environment.

The robot is tasked to sequentially visit two waypoints before reaching a designated goal at

(3, 0). In Fig. 4.6a, at t = 3.4s, the robot encounters a pedestrian on a collision course with its

planned path to the first waypoint at the top right. With our CLF-DR-CBF QP controller, the

robot employs a defensive maneuver. This adjustment shows the methodology’s capability to

anticipate potential hazards and react accordingly. As the pedestrian clears the immediate area,

the robot resumes its path tracking towards the first waypoint by 5.2s (Fig. 4.6b). This behavior

highlights the efficiency of our approach in balancing mission objectives with the need for safety.

The challenge intensifies at t = 22.8s when another pedestrian intersects the robot’s planned

route (Fig. 4.6c). In response, the robot stops to allow the pedestrian to pass safely. Once the

pedestrian has passed, the robot continues its journey towards the goal.

The successful completion of the task is shown in Fig. 4.6d, where the robot reaches its
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final goal after safely navigating past all dynamic obstacles at t = 25.64s. This simulation shows

the CLF-DR-CBF QP controller’s ability for robust path tracking and obstacle avoidance in a

dynamic environment.

Real-World Experiments

(a) Comparison of trajectories for the three robot
shapes.

(b) Robot Shape 2

Figure 4.7. Robot shapes and trajectories in real-world experiments.

We carried out real-world experiments using a differential-drive ClearPath Jackal robot.

The robot was equipped with an Intel i7-9700TE CPU with 32GB RAM, an Ouster OS1-32

LiDAR, and a UM7 9-axis IMU, and a velocity controller accepting linear and angular velocity.

Setup: The experiments took place in a lab environment, designed to test various

challenging scenarios. The robot relied solely on noisy LiDAR measurements for navigation.

We first tested our approach in an area of the lab with static obstacles, using three different

robot shapes: the original shape, Shape 1 (Fig. 4.2a), and Shape 2 (Fig. 4.7b). For quantitative

evaluation, we ran 50 trials per shape in environments populated with randomly placed obstacles

(e.g., cubes and pyramids) and three randomly walking pedestrians.

Results and discussion: Figure 4.7a shows the trajectories of the robot with the three

shapes navigating the same environment by following a pre-planned path. Notably, the planned
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(a) Thin chair legs (b) Narrow passage (c) Pedestrian approaching

Figure 4.8. Evaluation of our CLF-DR-CBF QP approach in a real lab environment. The top row
illustrates challenging scenarios, including (a) navigating around thin chair legs, (b) passing through a
narrow passage with pedestrians, and (c) handling an approaching pedestrian. The bottom plot shows
the robot’s velocity profile and distance to obstacles over time, with 3 vertical dotted lines marking the
specific time instances corresponding to the challenging scenarios in the top row.

path was generated assuming the nominal robot shape and did not account for the differences

introduced by Shape 1 and Shape 2. Consequently, the original shape demonstrates a minimal

deviation from the planned path, whereas Shape 1 exhibits the largest deviations due to its

wider, asymmetrical design. Table 4.5 summarizes the results, showing the success, stuck, and

collision rates for the three robot shapes under the proposed CLF-DR-CBF QP formulation. In

our evaluation, a robot was considered “stuck” if it did not reach its goal within 60 seconds.

When the robot shape becomes larger (Shapes 1 and 2), it is more likely to get stuck due to

limited maneuverability in tight spaces. This is particularly evident for Shape 1, where the

asymmetry makes the robot significantly wider on one side, further complicating its ability

to bypass obstacles. Additionally, the larger size of Shapes 1 and 2 reduces their ability to

navigate around obstacles within the required time, leading to reduced success rates. Despite

these challenges, all three shapes achieved a 0% collision rate, demonstrating the effectiveness of

our CLF-DR-CBF QP formulation in maintaining safe navigation.
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Figure 4.9. Robot trajectory (blue) and estimated occupancy map (yellow and gray) of the lab environment.

Table 4.5. Performance metrics for real-world experiments with different robot shapes. Metrics include
success rate, stuck rate, and collision rate over 50 trials per shape.

Shape Success(%) Stuck (%) Collision(%)
Original 100 0 0
Shape 1 84 16 0
Shape 2 90 10 0

Next, we demonstrated the performance of our CLF-DR-CBF QP formulation using

the original robot shape in a full-lab navigation task. The robot successfully handled various

real-world challenges, such as thin chair legs, narrow passages with pedestrians, and approaching

pedestrians (Fig. 4.8). In contrast to the CLF-GP-CBF SOCP formulation, which relies on GP

regression to construct CBFs and cannot handle dynamic environments effectively, our CLF-DR-

CBF QP formulation maintains safety while solely depending on noisy LiDAR measurements.

The bottom plot in Fig. 4.8 presents the distance to the obstacles and the robot’s velocity profile

over time, highlighting the robot’s ability to maintain a safe distance while efficiently navigating

towards its goal.
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(a) Workspace visualization (b) Bubble-CDF planning

Figure 4.10. Neural bubble-CDF planning on a planar 2-link robot arm. (a) The robot’s initial configuration
(solid blue) and two potential goal configurations (dashed red) are shown in a workspace with four obstacles,
represented by their point-cloud surfaces. Intermediate waypoints of the planned trajectory appear in
light green. (b) The corresponding 2D configuration space (θ1 vs. θ2), where the color map indicates the
learned CDF value (darker regions are closer to collision). Cyan circles denote safe bubbles derived from
the CDF barrier, forming a graph of collision-free regions. A smooth, optimized red trajectory connects
the start configuration (yellow circle) to the closest goal (red square); another feasible goal is marked with
a red triangle.

Fig. 4.9 depicts the estimated occupancy map and the executed trajectory using our

CLF-DR-CBF QP controller. The robot successfully navigates through the cluttered environment,

avoiding both static and dynamic obstacles, and reaches its desired goal position.

4.3 Application to Robot Manipulation

While the previous section demonstrated the effectiveness of our distributionally robust

framework for mobile robot navigation in workspace coordinates, many robotic applications

require safe control in high-dimensional configuration spaces. Robot manipulation presents a

particularly challenging domain where traditional CBF approaches face significant computational

and modeling difficulties due to the curse of dimensionality and complex kinematic constraints.

In manipulation tasks, robots must navigate through configuration space while avoiding

self-collisions and obstacles, often with limited sensing capabilities and uncertain environment
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geometries. This configuration-space representation introduces additional complexity compared

to workspace navigation, as distance computations are more expensive and collision detection

requires sophisticated reasoning from workspace to configuration space.

To address these challenges, we extend our distributionally robust CBF framework to

robot manipulation by combining configuration-space distance functions with efficient motion

planning and real-time safety filtering. As illustrated in Fig. 4.10, our method leverages recent

advances in bubble-based configuration-space modeling and integrates them with distributionally

robust control to achieve safe manipulation under uncertainty.

4.3.1 Configuration-Space Distance Function

Efficient motion planning and control for robotic manipulators require accurate and

scalable safety representations in configuration space. In this section, we first review the notion

of a signed distance function (SDF) in the workspace, then introduce the environment and

self-collision CDF and their key properties, and finally define a neural CDF barrier for planning

and control applications.

Environment Configuration Space Distance Function

Motivated by successful applications in safe mobile robot navigation [59, 77, 101] we

discussed in the previous section, SDFs have recently been used for motion planning and control

of robot manipulators [81, 91, 100, 155]. An SDF fs measures the distance from a workspace

point p ∈ R3 to the robot surface ∂S(q):

fs(p,q) =


− min

p∗∈∂S(q)
∥p− p∗∥, if p ∈ S(q),

min
p∗∈∂S(q)

∥p− p∗∥, if p /∈ S(q).
(4.27)

When represented using a differentiable model (e.g., neural network [81, 116]), this function

enables efficient motion planning and collision avoidance by facilitating rapid computation of
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distances and gradients. While SDFs are widely applied to mobile robots to enforce workspace

safety constraints, manipulators with high-dimensional joint spaces benefit from a configuration-

centric perspective.

More recently, researchers [90] introduced a configuration distance function (CDF), which

encodes the minimum joint-space distance (in radians) needed for a robot at configuration q to

make contact with a point p. Formally, given a robot SDF fs, the robot CDF can be computed as

fc(p,q) = min
q′
∥q− q′∥, subject to fs(p,q

′) = 0. (4.28)

Similar to an SDF, this CDF representation satisfies an Eikonal equation with respect to q:

∥∇qfc(p,q)∥ = 1, (4.29)

whenever it is differentiable in q.

In practice, computing (4.28) requires identifying a set of zero-level configurations q′

satisfying fs(p,q′) = 0. These configurations are typically obtained using numerical optimization

methods such as Broyden-Fletcher-Goldfarb–Shanno (BFGS) algorithm [65]. However, due to

the high dimensionality of the configuration space and the sparsity of q′ samples, this direct

formulation can lead to an overly smooth or inaccurate approximation of the true CDF. Therefore,

[90] leverage the fact that the contact at a point p is primarily determined by a subset of joints

preceding the contact link. Let k denote the robot link that comes into contact with p, and let q:k

represent the joint angles influencing the motion of link k. The CDF is then refined by restricting

the distance computation to these relevant joints:

fc(p,q) = min
k=1,...,m

min
q′
∥q:k − q′

:k∥, s.t. fs(p,q
′) = 0, (4.30)

where m is the total number of robot joints.
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Self-Collision Configuration Space Distance Function

While environment CDFs measure proximity to external obstacles, self-collisions between

different parts of the robot pose a distinct challenge, especially for high-DoF manipulators where

self-intersections are configuration-dependent and complex. To address this, we define the Self-

Collision Configuration Distance Function (SCDF), which quantifies the minimum joint-space

distance from a configuration q to the set of self-colliding configurations.

Let Csc ⊂ Q denote the closed set of joint configurations that result in self-collision.

Then, for a given configuration q ∈ Q, we define the SCDF as:

fsc(q) := min
q′∈Csc

∥q− q′∥. (4.31)

Similar to Section 4.3.1, the SCDF in (4.31) represents the Euclidean distance from q to

the closed set of self-colliding configurations Csc ⊂ Rm. Note that Csc may consist of multiple

disconnected components, as different joint subsets can lead to distinct types of self-collision.

Nevertheless, the SCDF inherits the Eikonal property and satisfies

∥∇qfsc(q)∥ = 1. (4.32)

In practice, Csc is often only sparsely sampled, and self-collisions typically involve

only a subset of joints. As such, computing the full-joint distance in (4.31) can lead to overly

conservative and inaccurate approximations. To improve accuracy and better exploit the robot’s

kinematic structure, we refine the SCDF by computing distance only over the subset of joints

responsible for the self-collision.

Specifically, if a self-collision at q′ occurs between Link i and Link j, we define the joint

subvector qa:b, where a = min(i, j) and b = max(i, j), to include only joints that affect the
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relative motion of these links. The refined SCDF becomes:

fsc(q) := min
q′∈Csc

∥qa:b − q′
a:b∥. (4.33)

For example, if the collision occurs between Link 3 and Link 5, then joints 3 through 5 may

primarily determine their relative positions, so the distance is computed using q3:5.

Neural CDF Barrier

Building on the environment and self-collision CDF, we define a CDF barrier to ensure

the robot remains in a collision-free region of the configuration space. Formally, a CDF barrier

associated with environment CDF fc, self-collision CDF fsc, and obstacle set O(t) is defined as:

h(q, t) := min{ inf
p∈∂O(t)

fc(p,q), fsc(q)} (4.34)

where ∂O(t) is the obstacle set boundary. Then, the time-varying safe set in configuration space

induced by h(q, t) is

Csafe(t) = {q ∈ Q | h(q, t) ≥ 0}. (4.35)

In real-world settings, ∂O(t) must be inferred from point-cloud measurements P(t) from

a depth camera or LiDAR. Because the points in P(t) are noisy samples from the boundary of

O(t), we approximate the CDF barrier as

h(q, t) ≈ min{ min
p∈P(t)

fc(p,q), fsc(q)}. (4.36)

Moreover, computing fc(p,q) and fsc(q) exactly are difficult for high-DoF manipulators because

it involves (infinitely) many potential contact configurations q′ in (4.28) and self-collision config-

urations in (4.33). Similar to [90], we model fc and fsc by multi-layer perceptrons f̂c(p,q;θ1)

and f̂sc(p,q;θ2) with learnable parameters θ1 and θ2, respectively. This representation reduces

the storage requirements compared to volumetric or tabular encodings and supports parallel
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queries for a set of points p or configurations q with associated gradient computations.

However, learning-based representations inevitably introduce modeling errors. Combining

the point-cloud approximation with the neural CDF approximation yields a practical CDF barrier:

ĥ(q, t;θ) = min{ min
p∈P(t)

f̂c(p,q; θ1), f̂sc(q;θ2)} (4.37)

where the noise in P(t), its lack of complete coverage of the obstacle boundary, and the

approximation error in f̂c and f̂sc constitute multiple sources of uncertainty.

In the following sections, we leverage the fast parallel query capabilities of the neural

CDF barrier to enable efficient sampling-based planning in configuration space, and then use the

developed distributionally robust control strategy in Sec. 4.1 that tracks the planned trajectory

while ensuring real-time safety despite uncertainties and dynamic obstacles.

4.3.2 Bubble-CDF Planning

Motion planning for high-DoF manipulators typically involves numerous collision checks

[64], making global motion planning computationally expensive. To address this, we propose

the bubble-CDF planner, a sampling-based approach that efficiently explores the configuration

space while ensuring safety via neural CDF barriers. Unlike conventional RRT-based planners

that rely on dense edge validation, our approach constructs configuration space bubbles as local

safe regions, enabling rapid exploration and collision-free path generation.

The robot must move from an initial configuration q0 to any valid joint configuration

qG that achieves a desired end-effector pose Tee(qG) = TG ∈ SE(3). Inverse kinematics (IK)

provides K goal configurations {qi
G}i∈[K], each of which achieves the desired end-effector pose.

Our approach builds on the Rapidly Exploring Bubble Graph (RBG) algorithm [87],

which constructs a configuration-space roadmap where each node represents a locally safe region

(bubble) instead of a single configuration. The learned CDF barrier ĥ(q, t) is used to define

the bubble radius dynamically, ensuring rapid, collision-free exploration without incremental

89



edge validation. This substantially reduces the collision-checking overhead in high-dimensional

spaces while preserving the efficiency of sampling-based planners.

Rapidly-exploring Bubble Graph (RBG)

Suppose q ∈ Q is a safe configuration. We aim to identify a radius r(q) ≥ 0 such

that any configuration q′ satisfying ∥q − q′∥ ≤ r(q) is safe. We call this spherical region a

configuration-space bubble and denote it as B(q, r(q)). Given the neural CDF barrier ĥ(q, t) for

fixed time t, we construct the bubble radius at configuration q as:

r(q) = ĥ(q, t)− η, (4.38)

where η > 0 is a safety margin. All configurations q′ within this radius satisfy the neural CDF

barrier with margin h(q′, t) ≥ η.

To explore a high-dimensional configuration space efficiently using these local safety

certificates, RBG adapts the RRT algorithm [86] so that each vertex in the graph corresponds to

a bubble rather than a single configuration. In RBG, the step size, corresponding to the distance

the planned tree advances toward a sampled point, is dynamically set by the radius of each bubble.

This obviates manual tuning of a fixed step size and reduces collision-checking overhead.

Algorithm 1 details how RBG constructs a bubble-based graph. RBG iteratively samples

random configurations (biased toward goal configurations), identifies the nearest bubble in

configuration space, and if the sample lies outside that bubble, creates a new bubble by querying

the neural CDF barrier to determine its radius. The newly created bubble is then connected to

any existing bubbles B(qi, r(qi)) with overlapping safe regions, i.e., if

∥qnew − qi∥ ≤ r(qnew) + r(qi). (4.39)

This process continues until the maximum number of bubbles Nmax is reached or feasible paths

to one goal configuration are identified.
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Algorithm 1. Rapidly Exploring Bubble Graph
Require: Start configuration q0, goal configurations {qi

G}Ki=1, Neural CDF barrier ĥ(q, t), safety margin
η, Max. no. of bubbles Nmax, Min. radius rmin.

Ensure: Graph G containing bubbles from start to goals
1: function BuildBubbleGraph(q0, {qi

G})
2: G.V ← {B(q0, ĥ(q0, t)− η)}, G.E ← ∅
3: while |G.V | < Nmax do
4: qrand ← SampleRandom() ▷ With goal bias
5: Bnear ← NearestBubble(G,qrand)
6: if qrand outside Bnear then
7: qnew ← ExtendToward(Bnear,qrand)
8: rnew ← ĥ(qnew, t)− η
9: if rnew > rmin then

10: Bnew ← B(qnew, rnew)
11: UpdateConnections(G,Bnew)
12: return G
13: function UpdateConnections(G,Bnew)
14: for Bi ∈ G.V do
15: if ∥Bnew.q− Bi.q∥ ≤ r(qnew) + r(qi) then
16: G.E ← G.E ∪ (Bnew,Bi)
17: G.V ← G.V ∪ {Bnew}

Path Selection and Trajectory Optimization

Once the bubble-based graph G is constructed, we must extract and refine a collision-free

path connecting the start configuration q0 to one of theK goal configurations {qi
G}. Since G may

contain multiple feasible routes, we first select an optimal path according to a desired criterion

(e.g., minimum total edge distance). We then solve a local trajectory optimization problem, fitting

a continuous curve through the sequence of bubbles to ensure a smooth, dynamically feasible

trajectory that remains collision-free.

Path Selection. We assign a cost to each edge in G, for instance, the single-sided

Hausdorff distance between two overlapping bubbles [87]. A shortest-path search (e.g., Dijkstra

[41] or A* [63]) is run from the start bubble to every goal bubble. The path with the lowest

overall cost is then passed to the optimization step, as summarized in Algorithm 2.

Trajectory Optimization. To obtain a smooth trajectory, we optimize a sequence of

Bézier curves connecting the start configuration q0 to the selected goal configuration q⋆
G through
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the path of bubbles {B1, . . . ,Bn}. Each Bézier curve segment of degree d is defined by its control

points:

γj(t) =
d∑

l=0

(
d

l

)
tl(1− t)d−lcj,l, (4.40)

where cj,l ∈ Rm is the l-th control point of the j-th curve segment. The k-th derivative of a

Bézier curve is also a Bézier curve, and its squared norm integral can be expressed as:

∫ 1

0

∥γ(k)j (t)∥2dt = c⊤j Qkcj, (4.41)

where cj is the vectorized form of all control points in segment j, and Qk is a positive semidefinite

matrix. This leads to the following convex quadratically constrained quadratic program:

min
{cj,i}

n∑
j=1

K∑
k=1

wk

∫ 1

0

∥γ(k)j (t)∥2dt

subject to ∥cj,l − qj∥2 ≤ r(qj)
2, ∀j, l

γj(1) = γj+1(0), j = 1, . . . , n− 1

γ
(k)
j (1) = γ

(k)
j+1(0), j = 1, . . . , n− 1, k = 1, 2

γ1(0) = q0, γn(1) = q∗
G,

γ
(i)
1 (0) = 0, γ(i)n (1) = 0, i = 1, . . . , d

(4.42)

where cj,i are the control points of the j-th Bézier curve segment γj of degree d, and γ(k)j denotes

its k-th derivative. The objective minimizes a weighted sum of integrated squared derivatives,

promoting smoothness. The first constraint ensures safety by keeping control points within

their respective bubbles, which by the convex hull property of Bézier curves guarantees the

entire trajectory remains collision-free. The remaining constraints enforce continuity of position

and derivatives between segments, as well as boundary conditions including zero velocity at

endpoints. Unlike traditional sampling-based planners that may not have safety guarantees or

require additional collision checks for post-optimized trajectory, our formulation provides a
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Algorithm 2. Path Selection and Trajectory Optimization
Require:

1: Graph G with start bubble Bstart, goal bubbles {Bigoal}i
2: Edge cost function EdgeCost(Bi,Bj)
3: Weights {wk} for trajectory cost

Ensure: Smooth collision-free Bézier trajectory from q0 to some qi
G

4: function PathSelectAndOptimize(G,Bstart, {Bigoal})
5: bestCost←∞, bestPath← None, ibest ← −1
6: for i = 1→ K do
7: pathi ← ShortestPath(G,Bstart,Bigoal,EdgeCost)
8: if pathi exists then
9: costi ← PathCost(pathi,EdgeCost)

10: if costi < bestCost then
11: bestCost← costi, bestPath← pathi, ibest ← i

12: if bestPath = None then
13: return failure ▷ No feasible path found
14: curves← BezierOpti(bestPath, {wk}) ▷ Eq. (4.42)
15: return

(
curves, ibest

)
convex optimization problem that simultaneously guarantees smoothness and safety without

requiring additional collision checking.

Throughout this section, we have introduced the bubble-CDF planner, which leverages

neural CDF barriers to efficiently explore the configuration space while ensuring safety. By

constructing configuration-space bubbles around safe configurations and dynamically adjusting

step sizes based on bubble radii, our approach significantly reduces collision-checking overhead.

Additionally, the trajectory optimization formulation in (4.42) guarantees smooth, dynamically

feasible paths without requiring post-processing for collision checks.

Thus far, we have focused on global planning in static environments, assuming a time-

invariant and accurate neural CDF barrier ĥ(q, t). However, real-world deployments must

contend with dynamic obstacles, CDF modeling errors, and sensor uncertainties. Those will be

handled by the distributionally robust safe control approach, introduced in Sec. 4.1.
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4.3.3 Simulated and Experimental Validation

This section evaluates our planning and control techniques, which utilize neural CDF

barriers, in simulations on 2-DoF planar arm and 6-DoF xArm as well as in real-world experiments

on 6-DoF xArm. We evaluate the computational efficiency and solution quality of the bubble-CDF

planner and the robustness of the DR-CBF controller in ensuring safety under dynamic obstacles

and uncertainty.

Baselines and Parameters

We compare our approach against the following baselines.

• Planners:

– CDF-RRT: RRT with collision checks based on the neural CDF barrier.

– SDF-RRT [159]: RRT with collision checks using a neural SDF barrier.

– SDF-RRT-Connect [83]: A variant of SDF-RRT with a bi-directional search strategy.

– SDF-Lazy-RRT [64]: A variant of SDF-RRT with reduced collision-checking

overhead.

• Controllers:

– PD Controller: A proportional-derivative controller ū(q, t) focused solely on trajec-

tory tracking.

– PD + CBF-QP [25]: A PD controller ū(q, t) augmented with a CBF-QP safety filter,

where the CBF is constructed using the neural CDF barrier. However, this approach

disregards uncertainty in the CDF model or sensor measurements, unlike ours.

The baseline planners are implemented using the Open Motion Planning Library (OMPL)

[135], ensuring consistency across all algorithms. All controllers are implemented using Casadi,
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Table 4.6. Planner parameters used for evaluation. Goal bias specifies the probability of sampling
configurations directly toward the goal. Step size defines the maximum extension distance during tree
expansion. Safety margin indicates the minimum clearance required for collision checking, and collision
check resolution determines the granularity of edge validity checks, expressed as a fraction of the
configuration space diagonal. For the 2-DoF planar robot, a resolution of 0.01 corresponds to 0.089
radians, while for the 6-DoF xArm, a resolution of 0.002 corresponds to 0.04 radians.

Planner Goal Bias Step Size Safety Margin Col. Check Resolution
Baselines 0.1 0.1 0.05 0.01 (2-DoF) / 0.002 (6-DoF)
Bubble-CDF 0.1 N/A 0.05 N/A

and the CBF-QP and our DR-CBF-QP problems are solved using the interior point optimizer,

operating at a control frequency of 50 Hz.

Evaluation Metrics: For planners, we evaluate the number of collision checks and path

length. For controllers, the evaluation metrics include success rate (percentage of trials where

the robot safely reaches the goal) and tracking error (measured as the Fréchet distance between

planned and executed paths).

Parameters: Tables 4.6 summarizes the parameters used for the planners.

2-DoF Planar Robot Simulation

(a) Initial configuration (b) Defensive maneuver (c) Resuming trajectory
tracking

(d) Goal reached

Figure 4.11. Snapshots of a 2-link arm navigating a dynamic environment with purple obstacles (velocity
directions shown by arrows). The robot follows the planned path in Fig. 4.10, shown in red (end-effector
trajectory), with the current local reference configuration γ(s) shown in green. (a) Initial configuration;
(b) Defensive maneuver to avoid a moving obstacle; (c) Resuming trajectory tracking; (d) Goal reached.

We begin by evaluating our bubble-CDF planner against baseline sampling-based global

motion planning approaches on a 2-DoF planar robotic arm. The arm consists of two links, each
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Table 4.7. Planning performance comparison on a 2-DoF planar robot.

Planner Col. Checks Path Length Time (s)
CDF-RRT 2108.9± 438.7 3.64± 0.69 0.33± 0.06

SDF-RRT [159] 2118.3± 388.9 3.61± 0.69 0.29± 0.04
SDF-RRT-Connect 2144.6± 459.7 3.63± 0.74 0.33± 0.05

SDF-Lazy-RRT 1759.2± 299.3 3.75± 0.83 0.31± 0.06
Bubble-CDF 153.8 ± 62.2 3.72± 0.81 0.13 ± 0.04

2 meters long, with a fixed base located at the origin (0, 0). The joint angles are constrained

within the range [−π, π), and the initial configuration is set to (0, 0), placing the end-effector at

(4, 0), as illustrated in Fig. 4.10.

Setup: We assess the performance of the bubble-CDF planner and all baselines in 500

randomly generated environments. Each environment includes 4 static obstacles of varying sizes

and positions, and the end-effector goal is randomly sampled to be at least 4 meters away from

its initial position while ensuring reachability. The robot receives point-cloud observations of

the obstacle surfaces. Due to the 2-DoF planar structure, most reachable end-effector positions

correspond to two distinct goal configurations, and the planners are tasked with finding a feasible

path from the initial configuration to either one of the two goal configurations.

Results and Discussion: Table 4.7 summarizes the performance metrics across all 500

environments. All planners succeed in finding the path. The results demonstrate the significant

efficiency of the bubble-CDF planner in reducing the number of collision checks, reducing the

planning time, while maintaining comparable path quality. The bubble-CDF planner requires

153.8 ± 62.2 collision checks, while even the best baseline (Lazy-RRT) requires at least 10×

more collision checks. As a result, bubble-CDF achieves the lowest planning time of all methods

at 0.13 ± 0.04 seconds. This showcases the ability of our proposed bubble-CDF planner to

explore the configuration space more efficiently. Despite this reduction, the bubble-based planner

produces paths with similar lengths (3.72± 0.81) radians to those of the baselines.

Next, we present our evaluation of the proposed DR-CBF-QP formulation for safe control
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Table 4.8. Control performance comparison on a 2-DoF planar robot.

Controller Static Dynamic
Success Rate Tra. Error Success Rate Tra. Error

PD 0.874 0.068± 0.017 0.112 0.062± 0.027
PD + CBF-QP [25] 0.982 0.131± 0.049 0.638 0.217± 0.106
PD + DR-CBF-QP 1.0 0.173± 0.074 0.992 0.394± 0.172

synthesis on a planar robot.

Setup: The controllers are evaluated in both static (Fig. 4.10) and dynamic environments

(Fig. 4.11). In both settings, point cloud data of the obstacle surfaces is provided to the

robot. For dynamic environments, obstacle velocities are sampled from a normal distribution,

v ∼ N (0.5, 0.1) m/s, while the robot is provided with a nominal velocity of v = 0.5 m/s for

control synthesis. Each controller is evaluated for 500 random trials in both static and dynamic

environments.

In both scenarios, the objective is to track the bubble-CDF planned trajectory γ (Fig. 4.10)

while avoiding collisions.

Results and Discussion: Table 4.8 presents the control performance across static and

dynamic environments. The proposed DR-CBF-QP formulation achieves a 100% success rate in

static environments and a high success rate (99.2%) in dynamic environments, outperforming

both the PD controller and the standard CBF-QP approach. The PD controller, designed solely

for trajectory tracking without obstacle avoidance, exhibits the lowest success rates in both static

and dynamic environments. The baseline CBF-QP shows good performance in static scenarios,

but its success rate drops significantly in dynamic environments (63.8%), which we attribute to

disregarding uncertainties in dynamic obstacle velocities.

While the DR-CBF-QP formulation results in higher tracking errors compared to the

baselines, this trade-off reflects its prioritization of safety. The controller adjusts the robot’s

trajectory to avoid collisions, especially in dynamic environments where safety margins must

adapt to uncertainties in obstacle motion and CDF estimates.
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Table 4.9. Planning performance comparison on a 6-DoF xArm robot in Pybullet Simulation.

Planner Col. Checks Path Length Time (s)
CDF-RRT 3415.4± 803.6 3.11± 0.46 0.75± 0.23

SDF-RRT [159] 3251.8± 782.4 3.07± 0.49 0.73± 0.20
SDF-RRT-Connect 3437.4± 723.2 3.11± 0.43 0.71± 0.21

SDF-Lazy-RRT 2741.1± 737.9 3.15± 0.53 0.72± 0.22
Bubble-CDF 278.5 ± 80.7 3.04± 0.46 0.15 ± 0.06

Qualitatively, the defensive maneuvers and adaptability of the DR-CBF-QP formulation

are evident in Fig. 4.11. In dynamic environments, the robot effectively modifies its trajectory to

avoid collisions, as shown in Fig. 4.11b, where it performs a defensive maneuver to bypass a

moving obstacle. It then resumes tracking the planned trajectory (Fig. 4.11c) and successfully

reaches the goal configuration (Fig. 4.11d).

6-DoF xArm Robot Simulation

Next, we present simulated experiments for a 6-DoF xArm robotic manipulator in Pybullet

[31] with static and dynamic obstacles to further evaluate our proposed approach.

Setup: The simulation environment consists of a 6-DoF xArm robot positioned on a

table next to a shelf, as illustrated in Fig. 4.12. A depth camera provides point-cloud observations

of the obstacles. We conducted 50 randomized trials by varying the shelf position and selecting

different random goal positions. For each trial, inverse kinematics was used to determine five

feasible goal configurations, and motion planning was performed in a static environment using

these configurations.

To evaluate controller performance, the best planned path from the bubble-CDF planner

was selected for tracking in each trial. Additionally, three dynamic obstacles were introduced into

the scene, with their positions and velocities varying but assumed to be known to the robot. The

velocities of the dynamic obstacles were sampled from a normal distribution, v ∼ N (0.2, 0.05)

m/s.
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(a) Initial Configuration (b) Planned Configuration 1 (c) Planned Configuration 2 (d) Goal Configuration

Figure 4.12. Bubble-CDF planning for a 6-DoF xArm robot in a static environment, targeting an
end-effector goal represented by a green sphere. (a) The initial configuration of the xArm. (b, c)
Intermediate configurations illustrating the planned path as the robot avoids obstacles while progressing
toward the goal. (d) The final goal configuration reached by the robot.

(a) Start of Execution (b) Dynamic Obstacle Ap-
proaching

(c) Defensive Maneuver (d) Goal Reached

Figure 4.13. Snapshots of safe control execution on a 6-DoF xArm robot in an environment with dynamic
obstacles. (a) The control execution begins at the initial configuration. (b) A dynamic obstacle (blue)
approaches the robot from right. (c) The robot executes a defensive maneuver, moving upward to avoid
the obstacle. (d) The robot successfully resumes tracking and reaches the goal configuration.

Results and Discussion: Table 4.9 summarizes the planning results for the 6-DoF xArm

robot. Similar to the 2-DoF case, the bubble-CDF planner significantly outperforms baseline

methods in terms of collision checks and planning time. Path lengths across all planners remain

comparable, indicating that the bubble-CDF approach does not compromise solution quality.

Figure 4.12 illustrates the planned path generated by the bubble-CDF planner in a static

environment for a specific end-effector goal inside the shelf. Among the five possible goal

configurations derived from inverse kinematics, the planner selects the shortest collision-free

path.

Table 4.10 quantitatively compares the control performance of different controllers under

both static and dynamic environments. The baseline PD controller achieves a success rate of

68% in the static environment but struggles significantly in dynamic scenarios, with a success

rate dropping to 18%, highlighting its inability to effectively react to moving obstacles.
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Table 4.10. Control performance comparison on a 6-DoF xArm robot in Pybullet Simulation.

Controller Static Dynamic
Success Rate Tra. Error Success Rate Tra. Error

PD 0.68 0.053± 0.014 0.18 0.051± 0.013
PD + CBF-QP [25] 0.88 0.115± 0.046 0.70 0.327± 0.104
PD + DR-CBF-QP 1.0 0.143± 0.055 1.0 0.516± 0.221

Table 4.11. Planning performance comparison on a real 6-DoF xArm robot.

Planner Col. Checks Path Length Time (s)
CDF-RRT 5617.4± 1333.6 3.71± 0.71 1.02± 0.33

SDF-RRT [159] 5911.9± 1487.7 3.72± 0.68 1.04± 0.33
SDF-RRT-Connect 5801.5± 1265.4 3.75± 0.63 1.05± 0.36

SDF-Lazy-RRT 4765.8± 1331.4 3.84± 0.69 0.96± 0.32
Bubble-CDF 634.8 ± 225.1 3.81± 0.66 0.22 ± 0.08

The addition of a CBF-QP safety filter improves the success rate to 88% in static

environments. However, in dynamic scenarios, its success rate remains limited at 70%, suggesting

that while CBF constraints enhance obstacle avoidance, they do not account for errors in CDF

modeling and point-cloud observations. In contrast, our proposed PD + DR-CBF-QP achieves a

100% success rate in both static and dynamic environments, demonstrating its robustness against

dynamic obstacles and uncertainty. The increased tracking error reflects the adaptive nature of

our approach, which prioritizes safety by dynamically adjusting the trajectory to avoid obstacles,

even if it deviates from the originally planned path.

Figure 4.13 illustrates the execution of a planned path by the xArm robot in a dynamic

environment. The robot begins at the initial configuration (Fig. 4.13a) and dynamically reacts

to an approaching obstacle (blue) as shown in Fig. 4.13b. By executing a defensive maneuver

(Fig. 4.13c), the robot moves upward to maintain safety and avoid a collision. After the obstacle

passes, the robot resumes trajectory tracking and successfully reaches the goal configuration

(Fig. 4.13d).
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(a) Planned configurations (b) Response to dynamic ob-
stacle

(c) Response to dynamic ob-
stacle

(d) Response to dynamic ob-
stacle

(e) Planned configurations (f) Response to dynamic ob-
stacle

(g) Response to dynamic ob-
stacle

(h) Response to dynamic ob-
stacle

Figure 4.14. Bubble-CDF planner and DR-CBF control applied to two real-world setups for a 6-DoF
xArm robot. The top row (a-d) represents Setup 1, with the robot navigating a cluttered environment
featuring a combination of static and dynamic obstacles. Similarly, the bottom row (e-h) depicts Setup
2, showcasing the planner’s adaptability in a different obstacle layout. For both setups: (a, e) illustrate
the bubble-CDF planned configuration in static environments, while (b-d, f-h) demonstrate the robot’s
real-time adaptive responses to dynamic obstacles.

6-DoF xArm Robot Experiments

To further validate the efficiency of the bubble-CDF planner and the robustness of the

DR-CBF controller, we conducted real-world experiments on a 6-DoF xArm manipulator in

several cluttered and dynamic environments.

Setup: The experimental environment consists of a 6-DoF xArm robot operating on a

table in a cluttered workspace with static obstacles, as shown in Fig. 4.14. A depth camera provides

point-cloud observations of the scene. We conducted 20 randomized trials by varying obstacle

placements and selecting different goal configurations. Planning was performed assuming the

static environment. During execution, the robot followed the planned path while dynamic

obstacles were introduced. The velocity of the moving objects is estimated using ArUco markers.

Results and Discussion: Table 4.11 presents a quantitative comparison of planning

performance across different methods. The bubble-CDF planner significantly reduces the

number of collision checks compared to all baselines, achieving a nearly tenfold reduction. This

improvement stems from the use of configuration-space bubbles, which certify local collision-
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free regions and minimize the need for frequent edge-based collision checking. Consistent

with simulation results, the generated path lengths remain comparable across all methods,

demonstrating that our approach maintains solution quality while substantially improving

efficiency.

Figure 4.14 shows snapshots of the bubble-CDF planner and DR-CBF controller in

two different workspace arrangements. The robot exhibits similar behavior to the simulation,

following the nominal planned trajectory (Figs. 4.14a, 4.14e) but stopping and avoiding dynamic

obstacles as they are presented.

Chapter 4, in full, is a reprint of the material as it appears in Safe and Stable Control

Synthesis for Uncertain System Models via Distributionally Robust Optimization, K. Long, Y. Yi,

J. Cortés, and N. Atanasov, American Control Conference, 2023; Sensor-Based Distributionally

Robust Control for Safe Navigation in Dynamic Environments, K. Long, Y. Yi, Z. Dai, S.

Herbert, J. Cortés, and N. Atanasov, International Journal of Robotics Research, 2025; and

Neural Configuration-Space Barriers for Manipulation Planning and Control, K. Long, K. M. B.

Lee, N. Raicevic, N. Attasseri, M. Leok, and N. Atanasov, under review, 2025. The dissertation

author was the primary researcher and author of these works.
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Chapter 5

Stability Certification and Lyapunov-
Stable Policy Learning

While the previous chapter (Chapter 4) established distributionally robust optimization

as a powerful framework for ensuring safety under uncertainty, safety guarantees alone are

insufficient for autonomous robotic systems. Beyond avoiding harm, robots must also demonstrate

stability—the fundamental property that desired outcomes will eventually be achieved and

maintained despite disturbances and uncertainties. Stability certification ensures that a robotic

system will converge to target configurations, maintain desired trajectories, and recover from

perturbations in a predictable manner. Without such guarantees, even a perfectly safe robot

may fail to accomplish its intended tasks, oscillating indefinitely around targets or exhibiting

unpredictable long-term behavior that undermines mission objectives.

The challenge of stability analysis becomes particularly acute for modern neural network-

based controllers. While deep reinforcement learning and imitation learning policies can achieve

remarkable performance on complex control tasks, their black-box nature resists traditional

Lyapunov-based stability analysis that forms the theoretical foundation of classical control theory.

Traditional Lyapunov methods rely on finding scalar energy-like functions that decrease along

system trajectories, but constructing such functions for high-dimensional neural network policies

with complex nonlinear activation patterns becomes computationally intractable. This challenge

is compounded by the inherent uncertainties present in real-world robotic systems, where model
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mismatch, environmental variations, and measurement noise can destabilize controllers that

appear stable under idealized training conditions.

(a) Inverted Pendulum (b) Cart Pole (c) Half Cheetah

Figure 5.1. DeepMind Control Suite environments and tasks used for stability analysis and neural policy
learning validation.

This chapter addresses the fundamental challenge of stability certification under uncer-

tainty through two complementary theoretical developments. First, we extend our distributionally

robust optimization framework to Lyapunov stability analysis, developing probabilistic notions

of stability that can handle uncertain systems without requiring exact knowledge of uncertainty

distributions. Building upon the Wasserstein ambiguity sets and mathematical foundations

established in the previous chapter, we formulate distributionally robust chance-constrained

formulations for Lyapunov function synthesis. This approach naturally accommodates the

complex, interacting uncertainties present in real robotic systems while providing finite-sample

stability guarantees that account for the limited data available during system identification and

validation.

Our distributionally robust Lyapunov theory extends traditional stability analysis by

reasoning over families of plausible uncertainty distributions rather than assuming perfect

knowledge of system dynamics. We develop both sum-of-squares programming approaches for

polynomial systems and neural network-based methods for more general nonlinear dynamics. The

sum-of-squares formulation provides theoretical guarantees through convex optimization, while
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the neural network approach offers greater expressiveness and scalability to high-dimensional

systems. Both methods reformulate the classical Lyapunov conditions to account for distributional

uncertainty, ensuring that stability certificates remain valid under distribution shifts and model

mismatch.

However, our investigations revealed a fundamental limitation when attempting to jointly

synthesize neural policies and their corresponding Lyapunov certificates for challenging control

tasks. The optimization landscape becomes prohibitively complex, and policies derived directly

from Lyapunov function gradients often exhibit poor performance characteristics. For instance,

in the inverted pendulum task shown in Figure 5.1 with tight control constraints, synthesizing

a Lyapunov function that certifies stability over the entire state space is nontrivial. Classical

Lyapunov-based methods typically fail in such settings, only managing to certify stability for

small regions near equilibrium. Moreover, policies derived directly from Lyapunov functions

often fail to stabilize the system effectively, becoming trapped in local minima or failing to

generate sufficient control authority to achieve stabilization.

This observation motivates the second major contribution of this chapter: a generalized

Lyapunov theory specifically designed for certifying the stability of high-performance neural

policies learned through reinforcement learning. Rather than attempting the computationally

prohibitive joint synthesis of policies and certificates, we develop relaxed notions of Lyapunov

functions that can provide meaningful stability guarantees for existing neural controllers post-hoc.

This approach recognizes that reinforcement learning algorithms excel at discovering effective

control strategies for challenging tasks like those shown in Figure 5.1, and focuses on developing

certificate construction methods that can validate the stability properties of these learned policies.

The generalized Lyapunov framework introduces several key theoretical innovations that

make stability certification tractable for neural policies operating in high-dimensional state spaces.

By relaxing the strict Lyapunov decrease conditions and incorporating distributional robustness

directly into the certificate construction process, we can provide stability guarantees for neural

controllers under uncertainty. This framework proves particularly effective for challenging
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control tasks where traditional methods fail to provide meaningful certificates, successfully

validating the stability of learned policies across their entire operating domains while accounting

for the distributional uncertainties inherent in reinforcement learning. The chapter presents a

systematic progression from distributionally robust extensions of classical Lyapunov theory to

specialized methods for neural policy certification. We demonstrate how the same mathematical

tools that enabled robust safety guarantees can be adapted to address stability concerns, while

introducing novel theoretical developments that specifically target the unique challenges posed

by neural network controllers. Through validation on both classical control systems and modern

reinforcement learning benchmarks, we show that distributionally robust stability certificates can

bridge the gap between the high performance of learned neural policies and the theoretical rigor

required for safety-critical deployment.

This chapter is based on the papers [96, 97, 103], which collectively advance stability

certification for uncertain and learned controllers through the following contributions:

1. Distributionally robust Lyapunov stability: We extend Lyapunov theory to uncertain

systems using distributionally robust optimization, deriving chance-constrained stability

conditions that provide finite-sample probabilistic guarantees without requiring exact

knowledge of uncertainty models [103].

2. Generalized Lyapunov certificates: We introduce relaxed Lyapunov conditions that enable

stability certification for both optimal control policies in linear systems and reinforcement

learning policies in nonlinear systems, addressing cases where traditional Lyapunov theory

is intractable.

3. Joint learning of policies and certificates: We extend both the distributionally robust and

generalized Lyapunov frameworks to the joint learning of control policies and certificates,

and demonstrate that our approach can learn provably Lyapunov-stable neural policies.

Together, these contributions establish a principled connection between Lyapunov theory,
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distributionally robust optimization, optimal control, and reinforcement learning, providing new

tools for certifying the stability of neural policies for robotic systems.

In this chapter, we consider

Problem 5. Consider a general system

ẋ = f(x,u),

or its discrete-time counterpart xt+1 = f(xt,ut). The objective is to jointly design a control

policy π(x) and a stability certificate V (x) such that the closed-loop system is provably stable

for all x in the domain of interest, even in the presence of model uncertainty.

5.1 Distributionally Robust Lyapunov Theory

We start with reviewing some prelims about Lyapunov theory. Consider a dynamical

system, ẋ = f(x), with state x ∈ X ⊆ Rn. Assume f : Rn 7→ Rn is locally Lipschitz and the

origin x = 0 is the desired equilibrium , i.e., f(0) = 0. A valid Lyapunov function, ensuring

the stability of the origin, satisfies (2.2). If the LF is also radially unbounded (V (x) → ∞

as ∥x∥ → ∞), then its existence implies global asymptotic stability. The second and third

conditions in (2.2) are implied by

V (x)− ϵ∥x∥22 ≥ 0 and − V̇ (x)− ϵ∥x∥22 ≥ 0, ∀x ̸= 0, (5.1)

for some ϵ ∈ R>0. A natural way of imposing non-negativity is by using SOS polynomials. A

polynomial η(x) of degree 2d is called an SOS polynomial if and only if there exist polynomials

s1(x), . . . , sp(x) of degree at most d such that η(x) =
∑p

i=0 si(x)
2. Based on the positive-

definiteness property of SOS polynomials, [115, 117] proposed the following SOS conditions,
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which are sufficient to imply (2.2),

V (x) =
2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); −V̇ (x)− ϵ∥x∥22 ∈ SOS(x), (5.2)

where SOS(x) denotes the set of SOS polynomials in variable x. By fixing a polynomial degree

d, one can search for an SOS LF using a semidefinite program [85] enforcing (5.2).

We aim to analyze Lyapunov stability for a dynamical system subject to model uncertainty:

ẋ = f(x) +
m∑
i=1

di(x)ξi = f(x) + d(x)ξ, (5.3)

where di : Rn 7→ Rn is locally Lipschitz. We assume that d(x) = [d1(x), . . . , dm(x)] ∈ Rn×m is

known or estimated from state-control trajectories [44, 62]. We do not assume any known error

bounds or distribution for the parameter ξ ∈ Ξ ⊆ Rm. Instead, we consider a finite data set of

samples {ξi}Ni=1 that may be used for LF synthesis. The uncertainty model in (5.3) captures the

commonly considered additive disturbance, which in our formulation corresponds to m = n

and d(x) = In. The matrix d(x) allows specifying particular system modes affected by the

disturbance ξ depending on the state x.

Problem 6 (Lyapunov Function Search For Uncertain Systems). Given a finite set of

uncertainty samples {ξi}Ni=1 from the uncertain system in (5.3), obtain a Lyapunov function

V : Rn 7→ R that can be used to verify the stability of the origin while taking the uncertainty

into account.

We present an SOS approach (Sec. 5.1.1) and a neural network approach (Sec. 5.1.2) to

address Problem 6. Our methodology is based on finding a function V : Rn 7→ R that satisfies

the Lyapunov conditions in (2.2). The uncertainty in the dynamical system (5.3) appears in the

term V̇ (x), which presents a challenge for ensuring that the condition V̇ (x) < 0, ∀x ̸= 0 is

satisfied.
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5.1.1 Sum-of-Squares Search

We first introduce our SOS approach for LF synthesis under model uncertainty. The

Lyapunov conditions in (5.1), taking the uncertainty in (5.3) into account, become:

V (0) = 0; ∀x ̸= 0, V (x)− ϵ∥x∥22 ≥ 0 and P∗(−V̇ (x, ξ)− ϵ∥x∥22 ≥ 0) ≥ 1− β, (5.4)

where P∗ denotes the true distribution of ξ.

To simplify the presentation, letG(x, ξ) = V̇ (x, ξ)+ϵ∥x∥22 = ∇V (x)⊤(f(x)+d(x)ξ)+

ϵ∥x∥22, so that the chance-constraint in (5.4) becomes P∗(−G(x, ξ) ≥ 0) ≥ 1 − β, ∀x ̸= 0.

Based on the discussion in Sec. 2.3, the CVaR approximation provides a sufficient condition for

enforcing the chance constraint:

inf
t∈R

[
β−1EP∗ [(G(x, ξ) + t)+]− t

]
≤ 0, for all x ̸= 0. (5.5)

If the true distribution P∗ were known, this formulation could be used to deal with the uncertainty.

However, we are only provided with samples {ξi}Ni=1 from P∗. We thus rewrite the condition

by multiplying by β on both sides and using the empirical expectation to approximate the true

expectation,

inf
t∈R

[
1

N

N∑
i=1

(G(x, ξi) + t)+ − tβ

]
≤ 0, ∀x ̸= 0. (5.6)

Due to the infimum term in the constraint, one cannot directly write (5.6) as an SOS condition,

as in (5.2). The following result provides an alternative SOS condition that ensures (5.6) holds.

Proposition 5.1.1 (CC-SOS Condition). Assume β ≤ 1
N

, the constraint in (5.6) is equivalent to:

max
i
β(V̇ (x, ξi) + ϵ∥x∥22) ≤ 0, ∀x ̸= 0, (5.7)
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Furthermore, if f and di are polynomials, the following N SOS conditions are sufficient for (5.7),

−V̇ (x, ξi)− ϵ∥x∥22 ∈ SOS(x), ∀i = 1, 2 . . . , N. (5.8)

Proof. Denote by t∗ the value when the infimum is attained in (5.6). Without loss of generality,

we assume that for a given x, G(x, ξi) ≥ G(x, ξj), for all 1 ≤ i < j ≤ N . Observe that for each

x ̸= 0, the function 1
N

∑N
i=1(G(x, ξi) + t)+ − tβ is piecewise-linear in t with N + 1 intervals

and N breakpoints, given by {−G(x, ξi)}Ni=1 and the slope for the i-th interval is i−1
N
− β. Thus,

the optimal solution is t∗ = −G(x, ξk), where k satisfies k−1
N
− β < 0 and k

N
− β ≥ 0. The

constraint in (5.6) can be rewritten as 1
N

∑k
i=1(G(x, ξi)−G(x, ξk))+βG(x, ξk) ≤ 0, ∀x ̸= 0.

Since β ≤ 1
N

, only the first interval has negative slope and this constraint can be written as (5.7).

Inspired by the SOS formulation in (5.2), (5.7) is implied by the N SOS constraints in (5.8).

Using Proposition 5.1.1, we propose a chance-constrained (CC)-SOS formulation to

search for a valid Lyapunov function for the uncertain system in (5.3):

V (x) =
2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); −V̇ (x, ξi)− ϵ∥x∥22 ∈ SOS(x), (5.9)

for all i ∈ [N ]. Note that by using CVaR approximations in (5.6) and assuming β ≤ 1
N

, the

CC-SOS formulation becomes equivalent to the formulation that is robust against the provided

samples {ξi}Ni=1, as shown in (5.8). This CC-SOS formulation overcomes the lack of knowledge

of the true uncertainty distribution P∗ by using the available samples ξi to conservatively

approximate the probabilistic constraint in (5.4) with N SOS conditions. Nonetheless, the

test-time validity of a Lyapunov function satisfying (5.9) is not guaranteed because the CC-SOS

condition does not account for the error between the empirical P̂N and the true P∗ distributions.

Moreover, the distribution P∗ that generates the uncertainty samples may change at deployment
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time. This motivates the following distributionally robust chance-constrained formulation:

V (0) = 0; ∀x ̸= 0, V (x)− ϵ∥x∥22 ≥ 0 and inf
P∈Mr

N

P(−V̇ (x, ξ)− ϵ∥x∥22 ≥ 0) ≥ 1−β, (5.10)

whereMr
N denotes the Wasserstein ambiguity set around the empirical distribution P̂N with

user-defined radius r. Based on the discussion in Sec. 2.3, the following constraint is a sufficient

condition for the distributionally robust chance constraint in (5.10) to hold,

sup
P∈Mr

N

inf
t∈R

[EP[G(x, ξ) + t)+]− tβ] ≤ 0, ∀x ̸= 0. (5.11)

As before, (5.11) is not amenable to a SOS formulation. The following result presents SOS

conditions which are sufficient to ensure that (5.11) holds.

Proposition 5.1.2 (DRCC-SOS Condition). Assume β ≤ 1
N

, consider the 1-Wasserstein distance

with L1 norm as the metric d. The following is a sufficient condition for (5.11) to hold,

r max
1≤j≤m

|∇V (x)⊤dj(x)|+max
i
β(V̇ (x, ξi) + ϵ∥x∥22) ≤ 0, ∀x ̸= 0, (5.12)

where ∇V (x)⊤dj(x) denotes the j-th element of the row vector. If Ξ = Rm, then (5.12) is

equivalent to (5.11). Also, if f and di are polynomials, (5.12) is implied by the following SOS

conditions,

±r∇V (x)⊤dj(x)− β(V̇ (x, ξi)− ϵ∥x∥22) ∈ SOS(x), ∀i = 1, 2 . . . , N, ∀j = 1, 2 . . . ,m.

(5.13)

Proof. Based on [71, Lemma V.8] and [47, Theorem 6.3], the supremum over the Wasserstein

ambiguity set, i.e., condition (5.11), can be written conservatively as the sample average

inft∈R

[
1
N

∑N
i=1(G(x, ξi) + t)+ − tβ

]
and a regularization term rLG(x), where LG(x) : X 7→

R>0 is the Lipschitz constant of G(x, ξ) in ξ. If Ξ = Rm, then (5.11) is equivalent to the sample
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average plus rLG(x). Since the Lipschitz constant of a differentiable affine function equals the

dual norm of its gradient, and the dual norm of the L1 norm is the L∞ norm, we can define the

convex function LG : X 7→ R>0 as LG(x) = ∥∇V (x)⊤d(x)∥∞ = max1≤j≤m |∇V (x)⊤dj(x)|,

which satisfies the property that ξ 7→ G(x, ξ) is Lipschitz in ξ with Lipschitz constant LG(x).

With the assumption that β ≤ 1
N

, we use Proposition 5.1.1 and conclude that (5.12) is a sufficient

condition for (5.11) and they are equivalent if Ξ = Rm. Finally, inspired by the SOS relaxations

of (2.2) to (5.2), we can relax (5.12) to the 2Nm SOS constraints in (5.13).

Based on Proposition 5.1.2, we propose a DRCC-SOS formulation to find a Lyapunov

function,

V (x) =
2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); (5.14)

± r[∇V (x)]⊤dj(x)− β(V̇ (x, ξi)− ϵ∥x∥22) ∈ SOS(x), ∀i = 1, 2 . . . , N, ∀j = 1, 2 . . . ,m.

The next result identifies conditions under which the resulting Lyapunov function solves Problem 6.

The DRCC-SOS formulation (5.14) provides a stability guarantee if there is no uncertainty

distributional shift, i.e., P∗ does not shift outside ofMr∗
N at deployment time. However, similar to

other SOS approaches, the formulation is restricted to polynomial systems and the non-existence

of an SOS LF does not imply the non-existence of other valid LFs. This motivates us to consider

next a more general candidate LF candidate, represented as a neural network.

5.1.2 Neural Network Search

We propose a neural network approach that encourages the satisfaction of Lyapunov

conditions by minimizing a loss function that quantifies their violation. Consider a neural network

Lyapunov function (NN-LF) representation of the form Vθ(x) := ∥ϕθ(x)− ϕθ(0)∥2 + α̂∥x∥2,

where ϕθ : Rm 7→ R is a fully-connected neural network with parameters θ and tanh activations,

and α̂ is a user-chosen parameter [50]. By construction, this function is positive definite and
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Vθ(0) = 0. We obtain a training set DLF := {xi}Mi=1 by sampling uniformly from the domain of

interest Xδ and then minimize the following empirical loss function:

ℓLF(θ) =
1

M

M∑
i=1

(V̇θ(xi) + γ∥xi∥)+, (5.15)

where γ is user-defined. This loss encourages a decrease of Vθ along the system trajectories.

To deal with the model uncertainty in (5.3), we develop chance-constrained (CC) NN-LF

and distributionally robust chance-constrained (DRCC) NN-LF formulations. In both cases, we

also have the offline uncertainty training set Dξ := {ξi}Ni=1. For the CC-NN-LF formulation, we

require

P∗(V̇θ(x, ξ) + γ∥x∥ ≤ 0) ≥ 1− β, ∀x ∈ Xδ. (5.16)

However, we are only given samplesDξ from P∗. Assuming β ≤ 1
N

, similarly to Proposition 5.1.1,

we approximate (5.16) conservatively as,

∀xi ∈ DLF, max
j

(V̇θ(xi, ξj) + γ∥xi∥) ≤ 0.

Thus, to aim for the satisfaction of (5.16) for the training set DLF, we construct the loss function,

ℓCC-LF(θ) =
1

M

M∑
i=1

(max
j

(V̇θ(xi, ξj) + γ∥xi∥))+. (5.17)

For the DRCC-NN-LF formulation, to account for errors between the empirical distribution P̂N

and the true distribution P∗ as well as possible distribution shift during deployment, we require:

inf
P∈Mr

N

P(V̇θ(x, ξ) + γ∥x∥ ≤ 0) ≥ 1− β, ∀x ∈ Xδ. (5.18)
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Note that (5.18) can be tightened in terms of the CVaR approximation as:

sup
P∈Mr

N

inf
t∈R

[
EP(V̇θ(x, ξ) + γ∥x∥+ t)+ − tβ

]
≤ 0, ∀x ∈ Xδ. (5.19)

Next, using the uncertainty set Dξ and the training dataset DLF and assuming β ≤ 1
N

, similarly

to Proposition. 5.1.2, we rewrite the inequality conservatively as (equivalently if Ξ = Rm),

∀xi ∈ DLF, r∥∇V (xi)
⊤d(xi)∥∞ + βmaxj(V̇θ(xi, ξj)) + γ∥xi∥ ≤ 0. Thus, we design the

following empirical loss function for the DRCC-NN-LF formulation,

ℓDRCC-LF(θ) =
1

M

M∑
i=1

(r∥∇V (xi)
⊤d(xi)∥∞ + βmax

j
(V̇θ(xi, ξj)) + γ∥xi∥)+. (5.20)

The neural network approach, with the novel loss function designs in (5.17) and (5.20), overcomes

the issues noted above for the SOS approach. In particular, we do not require the dynamics to be

described by polynomials and avoid scalability problems.

Evaluation Results

We apply the SOS approach (Sec. 5.1.1) and the neural network approach (Sec. 5.1.2) to

synthesize LFs for a polynomial system and a pendulum system under model uncertainty.

Third-degree Polynomial System: Consider a two-dimensional polynomial system:

ẋ1
ẋ2

 =

−1
2
x31 − 3

2
x21 − x2

6x1 − x2

+
2∑

i=1

di(x)ξi, (5.21)

with two cases for the model uncertainty:

• Case 1: r=0.25, d1(x) = −[x1, x2]⊤, d2(x) = −[x2, 0]⊤, ξ ∼ [N (5, 1),N (3, 1)]⊤.

• Case 2: r=0.15, d1(x) = −[(x31+x2), x2]⊤, d2(x) = −[x2, x1]⊤, ξ ∼ [N (6, 1),N (0, 1)]⊤.

Suppose that 9 samples {ξi}9i=1 are available offline and set the confidence level to β = 0.1.

114



(a) Original SOS Search (b) CC-SOS Search (c) DRCC-SOS Search

(d) Original NN Search (e) CC-NN Search (f) DRCC-NN Search

Figure 5.2. Results from SOS and NN formulations to design LF certificates for the polynomial system
with Case 2 perturbations and online uncertainty ξ∗ = [1.9, 3.0]⊤. The plots display the value of V̇ over
the domain, where the red areas indicate positive values (violation of the LF derivative requirements).

We compare the SOS search results with polynomial degree of 4 for the original SOS

formulation in (5.2), the CC-SOS formulation in (5.9), and the DRCC-SOS formulation in

(5.14). We also include results from the NN formulation in (5.15), the CC-NN formulation in

(5.17), and the DRCC-NN formulation in (5.20). For the neural network approach discussed in

Sec. 5.1.2, we parametrize Vθ(x) = |ϕθ(x)− ϕθ(0)|+ α̂∥x∥, where ϕθ(x) is a fully connected

three-layer neural network with 2-D input, two 16-D hidden layers, and 1-D output, with tanh

activations. We train the network with the ADAM optimizer [79] with learning rate 0.005 and

Xavier initializer, and set the parameter α̂ = 0.05.

We report qualitative results in Fig. 5.2 for Case 2 with online uncertainty ξ∗ = [1.9, 3.0]⊤.

We uniformly sample {xi}5000i=1 states in the region x1, x2 ∈ [−2, 2]. For the first-column plots, the

resulting LFs from the baseline SOS and NN formulation fail to satisfy the Lyapunov condition

for uncertain systems of the form (5.21), and the violation area is large since neither formulation

takes uncertainty into account. For the second-column plots, the resulting LF from the CC-SOS

or CC-NN formulation is less sensitive to uncertainty, since both take offline uncertainty samples
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Table 5.1. Comparison of Cases 1 and 2 under different online true distributions. Here, “vio. rate”
denotes violation rate: (validations with V̇ > 0)/(total validations), and “vio. area” denotes average
violation area over all simulations: (data points with V̇ > 0)/(total data points). 5000 realizations of the
online true uncertainty ξ∗ are sampled from uniform and Gaussian distributions: ξ∗ ∼ [U(1, 4),U(1, 2)]⊤
and ξ∗ ∼ [N (4, 1.5),N (1, 1.5)]⊤ for Case 1, ξ∗ ∼ [U(5, 7),U(−1, 1)]⊤ and ξ∗ ∼ [N (7, 1),N (1, 1)]⊤

for Case 2.

Formulations Case 1 Uniform Case 1 Gaussian Case 2 Uniform Case 2 Gaussian
vio. rate vio. area vio. rate vio. area vio. rate vio. area vio. rate vio. area

SOS 14.28% 0.94% 12.14% 1.53% 100% 15.52% 100% 18.55%
CC-SOS 11.78% 0.89% 8.30% 1.24% 0.00% 0.00% 5.10% 0.04%

DRCC-SOS 0.02% 0.00% 5.24% 0.80% 0.00% 0.00% 1.64% 0.01%
NN 31.80% 1.95% 16.66% 1.65% 100% 17.10% 100% 19.53%

CC-NN 1.82% 0.01% 6.24% 0.72% 0.00% 0.00% 1.26% 0.01%
DRCC-NN 0.00% 0.00% 3.22% 0.38% 0.00% 0.00% 0.72% 0.00%

into account. However, the resulting V still fails to satisfy the Lyapunov condition for (5.21).

The LF resulting from our DRCC-SOS and DRCC-NN formulations in the last column satisfies

the Lyapunov conditions for (5.21), even with out-of-distribution uncertainty. Table 5.1 shows

quantitative results. We report the violation rate and average violation area for each of the 6

formulations: in all cases, the DRCC formulations outperform the CC and baseline formulations

(no uncertainty considered) using either the SOS or the neural network approach in terms of

violation rate and mean violation area.

Pendulum: Consider a pendulum with angle θ and angular velocity θ̇ following dynamics:

θ̇
θ̈

 =

 θ̇

−mgl sin θ−bθ̇
ml2

+

 0 0

−0.05bθ̇
ml2

−0.05mgl sin θ
ml2

 ξ, (5.22)

where g = 9.81 is the gravity acceleration,m = 1.0 is the ball mass, l = 0.5 is the length, b = 0.1

is the damping, and d(x) = [d1(x), d2(x)] is the perturbation matrix with d1 and d2 representing

perturbations in damping and length, respectively.

We use 3 offline uncertainty samples {ξi}3i=1 with ξi ∼ [N (0, 1),N (0, 1)]⊤, and set the

confidence level β = 0.1. The SOS search polynomial is set to have a degree 4 with Wasserstein

radius r = 0.03. The neural network ϕθ consists of a fully connected four-layer architecture,
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(a) Original SOS Search (b) CC-SOS Search (c) DRCC-SOS Search

(d) Original NN Search (e) CC-NN Search (f) DRCC-NN Search

Figure 5.3. Results from SOS and NN formulations to design LF certificates for a pendulum with
perturbation in the damping and length and online uncertainty ξ∗ = [−3.6, 1.4]⊤. The plots display the
value of V̇ over the domain, where the red areas indicate positive values (violation of the LF derivative
requirement).

featuring a 3-D input, three 64-D hidden layers, and a 2-D output. The network employs tanh

activations, and the pendulum state θ is rewritten as two states, sin θ and cos θ. The Wasserstein

radius is set to r = 0.12. We train the network with the ADAM optimizer with learning rate

0.002 and Xavier initializer, and set the parameter α̂ = 0.5.

We compare the qualitative results between the SOS-based approaches and the NN-based

approaches in Fig. 5.3 with the online uncertainty ξ∗ = [−3.6, 1.4]⊤. Similar to Fig. 5.2, only

the DRCC-SOS and DRCC-NN formulations meet the Lyapunov conditions within the domain

of interest. The derivative violations observed near the small neighborhood of the equilibrium in

the DRCC-NN formulation are a common issue in neural network-based Lyapunov functions, as

reported in previous studies [24, 50].

The approaches presented thus far focus on synthesizing distributionally robust Lyapunov

functions for closed-loop systems, whether through sum-of-squares programming or neural

network parametrization. While these methods provide stability certificates robust to model

117



uncertainty, they assume the control policy is fixed. In many practical scenarios, however, we

have the flexibility to design both the control policy and its corresponding stability certificate

simultaneously. This joint design paradigm can potentially yield superior performance by

allowing the policy and certificate to be co-optimized.

5.1.3 Joint Synthesis of Lyapunov-Stable Policies and Distributionally
Robust Certificates

In this section, we present our results from [97]. We aim to synthesize a Lyapunov-stable

controller for the continuous-time system with model uncertainty:

ẋ = f̄(x,u, ξ) := f(x,u) +W(x,u)ξ, (5.23)

where x ∈ X ⊂ Rn denotes the state vector, u ∈ U ⊂ Rm is the control input, and the functions

f : Rn×Rm → Rn and W : Rn×Rm → Rn×k are locally Lipschitz. The setX ⊂ Rn represents

the domain of interest, which includes the origin, and U ⊂ Rm denotes the set of admissible

control inputs. We assume X and U are compact.

The uncertainty structure is characterized by the matrix W, where each column represents

a specific direction of uncertainty (e.g., variations in mass or friction parameters). The vector

ξ = [ξ1, ξ2, . . . , ξk]
⊤ captures the magnitude of uncertainty along these directions, with its true

distribution P∗ supported on a compact set Ξ ⊂ Rk. We assume that W(0n,0m) = 0n×k,

ensuring the origin remains the desired equilibrium point regardless of the uncertainty realization.

Problem 7 (Distributionally robust Lyapunov function and controller learning). Consider

the system (5.23) with nominal dynamics f and uncertainty structure W. Given finitely many

samples {ξi}i∈[N ] of the uncertainty ξ, design a control policy π : Rn → Rm and a corresponding

Lyapunov certificate V : Rn → R such that the closed-loop system achieves global asymptotic

stability with high confidence, accounting for potential distribution shift between the training

samples and the true uncertainty distribution.
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To address Problem 7, we develop a distributionally robust formulation that accounts

for potential discrepancies between the empirical distribution PN and the true distribution P∗

of the system uncertainty ξ at runtime. Our approach seeks a pair (V ∗,π∗) satisfying the

distributionally robust Lyapunov derivative constraint:

inf
P∈Mr

N

P(sup
x∈X

(V̇ ∗(x,π∗(x), ξ) + γ∥x∥) ≤ 0) ≥ 1− ϵ. (5.24)

Compared with the chance-constrained formulation in (2.15), this distributionally robust for-

mulation requires only finite samples instead of the true distribution P∗, while offering robust

constraint satisfaction guarantees against potential distribution shifts within the constructed

ambiguity set.

We now characterize the stability properties of the closed-loop system. The following

results establish that satisfying constraint (5.24) ensures global asymptotic stability with high

probability.

Lemma 5.1.3 (Chance-constraint satisfaction under the true distribution). Assume the

distribution P∗ of ξ in (5.23) is light-tailed and the Wasserstein radius rN(ϵ̄) is set according

to (4.6). If the controller π∗(x) and Lyapunov function V ∗(x) pair satisfies (5.24) with r = rN(ϵ̄),

then,

P∗(sup
x∈X

(V̇ ∗(x,π∗(x), ξ) + γ∥x∥) ≤ 0) ≥ (1− ϵ)(1− ϵ̄). (5.25)

Proof. Let A := {P∗ ∈ MrN (ϵ̄)
N } and B := {supx∈X (V̇

∗(x,π∗(x), ξ) + γ∥x∥) ≤ 0}. From

[47, Theorem 3.4], P∗(A) ≥ 1− ϵ̄. From (5.24), infP∈MrN (ϵ̄)

N

P(B) ≥ 1− ϵ. Therefore:

P∗(B) ≥ P∗(B ∩ A) = P∗(B|A)P∗(A)

≥

(
inf

P∈MrN (ϵ̄)

N

P(B)

)
P∗(A) ≥ (1− ϵ)(1− ϵ̄)

Lemma 5.1.4 (Global asymptotic stability in probability). Let V ∗ : Rn → R be positive
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definite with V ∗(0n) = 0, and let V ∗ and controller π∗ : Rn 7→ Rm satisfy (5.25). Then

the origin of the closed-loop system ẋ = f̄(x,π∗(x), ξ) is globally asymptotically stable with

probability at least (1− ϵ)(1− ϵ̄).

Proof. Define A := {ξ | supx∈X (V̇
∗(x,π∗(x), ξ) + γ∥x∥) ≤ 0} and B := {ξ | the system is

asymptotically stable at x = 0n}. For ξ ∈ A, we have V̇ ∗(x,π∗(x), ξ) ≤ −γ∥x∥, so V ∗

decreases along trajectories, ensuring convergence to equilibrium. Thus A ⊆ B and P∗(B) ≥

P∗(A) ≥ (1− ϵ)(1− ϵ̄).

Remark 5.1.5 (Extensions and connections). Under additional conditions, exponential stability

can be established by replacing constraint (5.24) with

inf
P∈Mr

N

P(sup
x∈X

(V̇ ∗(x,π∗(x), ξ) + γ∥x∥+ αV ∗(x)) < 0) ≥ 1− ϵ (5.26)

for some α > 0, and requiring V ∗ to satisfy appropriate bounds. Our stability notion differs

from typical stochastic systems where uncertainty varies over time; since ξ remains fixed in our

setting, we achieve stronger convergence guarantees.

Directly optimizing constraint (5.24) is challenging due to the infimum over probability

measures and supremum over state space. We leverage distributionally robust optimization

techniques to derive a tractable sufficient condition.

Define h : Rk → R as:

h(ξ) := sup
x∈X

(
V̇ (x,π(x), ξ) + γ∥x∥

)
, (5.27)

where V̇ (x,π(x), ξ) = ∇V (x)⊤(f(x,π(x)) +W(x,π(x))ξ). Since h(ξ) is the supremum of

affine functions in ξ, it is convex in ξ.

Proposition 5.1.6 (Distributionally Robust Stability Condition). Let {ξi}i∈[N ] be samples

ordered such that h(ξi) ≥ h(ξk) for 1 ≤ i < k ≤ N . For ϵ ∈ (0, 1), let j ∈ [N ] satisfy
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j−1
N
− ϵ < 0 and j

N
− ϵ ≥ 0. Then:

r

ϵ
sup
x∈X
∥W⊤(x,π(x))∇V (x)∥+ 1

Nϵ

j−1∑
i=1

(h(ξi)− h(ξj)) + h(ξj) ≤ 0 (5.28)

is sufficient for (5.24) with 1-Wasserstein distance. If ϵ ≤ 1
N

, this simplifies to:

r

ϵ
sup
x∈X
∥W⊤(x,π(x))∇V (x)∥+max

i
h(ξi) ≤ 0. (5.29)

This reformulation provides a tractable condition for synthesizing the controller-certificate

pair (V ∗,π∗), enabling practical implementation through neural network optimization as detailed

in the next section.

Having established the theoretical foundation and tractable reformulations, we now

present a neural network-based approach to learn the distributionally robust controller-certificate

pair (V ∗,π∗) that satisfies constraint (5.28). Our approach leverages the universal approximation

capabilities of neural networks to parametrize both the Lyapunov function and controller, enabling

practical implementation of the distributionally robust stability framework.

We begin by establishing the necessary assumptions and then detail our neural network

architecture and training methodology.

Assumption 5.1.7 (Lipschitz continuity and boundedness). The nominal dynamics f : Rn ×

Rm → Rn and perturbation function W : Rn×Rm → Rn×k are Lipschitz continuous on X ×U

with constants Lf and LW , respectively. Moreover, both functions are uniformly bounded on

X × U with bounds Bf and BW .

This assumption ensures that the system dynamics vary smoothly across the state and

control spaces, which is essential for our neural network-based stability certificates to generalize

from discrete training samples to the continuous state space. We parametrize the Lyapunov

function and controller using neural networks with specific structural constraints that ensure the

necessary mathematical properties.
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Lyapunov Function Parametrization: We define the neural network Lyapunov function

as:

Vθ1(x) := ∥ϕθ1(x)− ϕθ1(0n)∥2 + α̂∥x∥2, (5.30)

where ϕθ1 : Rn 7→ R is a fully-connected neural network with parameters θ1, tanh activations,

and α̂ > 0 is a regularization parameter. This construction ensures:

• Positive definiteness: Vθ1(x) > 0 for all x ̸= 0n

• Zero at origin: Vθ1(0n) = 0

• Continuous differentiability: The tanh activations ensure smooth gradients

Controller Parametrization: The neural network controller is defined as:

πθ2(x) := φθ2(x)− φθ2(0n), (5.31)

where φθ2 : Rn 7→ Rm is a neural network with parameters θ2 and tanh activations. This ensures

πθ2(0n) = 0m, maintaining the equilibrium at the origin.

Due to neural network approximation limitations near the equilibrium, we adopt a

δ-accurate stability framework that ensures stability outside a small neighborhood of the origin.

Definition 5.1.8 (Distributionally robust δ-accurate Lyapunov function). A Lyapunov function

V (x) for system (5.23) is distributionally robust δ-accurate if it is positive definite, V (0n) = 0,

and satisfies:

inf
P∈Mr

N

P( sup
x∈Xδ

(V̇ (x,π(x), ξ) + γ∥x∥) ≤ 0) ≥ 1− ϵ, (5.32)

where Xδ := X \B(0n; δ) excludes a δ-radius ball around the origin.

This framework ensures ultimate boundedness of trajectories within the ball B(0n; δ),

with δ > 0 chosen arbitrarily small.
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We construct training datasets DLF := {xi}i∈[M ] by uniform sampling from Xδ and use

the uncertainty samples Dξ := {ξi}i∈[N ] from offline system measurements.

Nominal Loss (Baseline): For systems without uncertainty, we use:

ℓNominal(θ) =
1

M

M∑
i=1

(V̇θ1(xi,πθ2(xi)) + γ∥xi∥)+ (5.33)

Distributionally Robust Loss: For uncertain systems with ϵ ≤ 1
N

, we use:

ℓDR(θ) =

(
r

ϵ
max
xi∈DLF

∥W⊤(xi,πθ2(xi))∇Vθ1(xi)∥ (5.34)

+max
j

M∑
i=1

(V̇θ1(xi,πθ2(xi), ξj) + γ∥xi∥)

)
+

The condition ϵ ≤ 1
N

is practical for limited data scenarios and ensures stronger stability

guarantees by requiring the Lyapunov condition to hold for all uncertainty samples.

We establish that sufficient sampling density ensures the learned neural networks provide

the desired stability guarantees.

Lemma 5.1.9 (Coverage lemma [50]). For any δ > 0 and c > 0, there exists M(δ, c) ∈ N such

that for all M ≥ M(δ, c), a uniformly sampled dataset DLF ⊂ Xδ ensures that any x ∈ Xδ is

within distance c∥xi∥ of some xi ∈ DLF.

Proposition 5.1.10 (Distributionally robust neural Lyapunov-stable control). Let DLF ⊂ Xδ

with |DLF| ≥M(δ, c), and let θ∗ achieve ℓDR(θ
∗) = 0. If c > 0 is sufficiently small such that:

γ > ((LW (Lπ + 1))BV + L∇VBW )Bξ
r

ϵ
c+ (Lf (Lπ + 1)BV + L∇VBf )c, (5.35)

then πθ∗
2

stabilizes system (5.23) to B(0n; δ) with high probability, as certified by the distribu-

tionally robust δ-accurate Lyapunov function Vθ∗
1
.

Evaluation:
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(a) Baseline Trajectories (b) DR Trajectories

Figure 5.4. Comparison of trajectories for the inverted pendulum system with test case parameters: mass
m = 1.1, length l = 1.0, and damping b = 0.18. The 10 random sampled initial states are marked as green
dots, while the final states are marked as red crosses. The states (θ, θ̇) = (2kπ, 0) for k ∈ N are stable
equilibrium states, while the points ((2k − 1)π, 0) are unstable equilibrium points, corresponding to the
upside-down position of the pendulum. In (a), the baseline controller, trained using the average mass and
damping from offline observations, fails to stabilize the pendulum to upright. In (b), the distributionally
robust (DR) controller successfully stabilizes the pendulum to an upright position for every initial state,
demonstrating improved robustness to distributional shifts in the system parameters.

We then evaluates our approach for synthesizing distributionally robust Lyapunov-stable

controllers. We focus on the classic Inverted Pendulum control problem. For the system,

we consider multiple instances with varying characteristics, each defined by its own physical

parameters such as mass, length, and friction. These instances are used for training our

distributionally robust Lyapunov-stable controller.

During testing, we assume the physical parameters of each system may be drawn from

distributions different from those of the training instances. This setup aims to assess the

performance of the learned controller under realistic scenarios, where distributional shifts in

the system parameters are common. By doing so, we effectively evaluate the robustness and

adaptability of our controller in the presence of distributional uncertainty in the system models.

The inverted pendulum is a standard nonlinear control problem for testing control methods.

The system consists of two state variables, angular position θ and angular velocity θ̇, and one
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control input u. The system dynamics are:

θ̇
θ̈


︸︷︷︸

ẋ

= f(x,u) :=

 θ̇

mgl sin θ−bθ̇
ml2

+

 0

1
ml2

u (5.36)

where g = 9.81 m/s2 is the gravity acceleration, m = 1.0 kg is the mass, l = 1.0 m is the

length, and b = 0.13 N·m·s/rad is the damping coefficient. The equilibrium state is defined as

[θ, θ̇] = [0, 0], which corresponds to the upright equilibrium position.

For training both the baseline and the DR controllers, we generate a training dataset by

uniformly sampling {xi}i∈[3600] from the box region defined by 0 ≤ θ ≤ 2π and −8 ≤ θ̇ ≤ 8.

We assume uncertainties in mass and damping, represented by ξ1 and ξ2, respectively.

The uncertain system dynamics are:

ẋ =

 θ̇

(m+ξ1)gl sin θ−(b+ξ2)θ̇
(m+ξ1)l2

+

 0

1
(m+ξ1)l2

u. (5.37)

Through first-order Taylor expansion around the nominal parameters, we derive the perturbation

matrices W = [w1,w2] for the inverted pendulum subject to model uncertainty:

w1(x,u) =

 0

bθ̇−u
m2l2

 , w2(x,u) =

 0

− θ̇
ml2

 . (5.38)

We assume that a set of offline samples {ξi}5i=1 of the uncertainties ξ = [ξ1, ξ2]
⊤

are available for training the controller and certificate pairs. We take ξ1 ∼ U(−0.04, 0.08),

ξ2 ∼ N (0.0, 0.02), where U and N denote uniform and normal distributions, respectively.

However, during test time, the test uncertainty parameters are set to ξ1 = 0.1 and ξ2 = 0.05.

These test values represent a significant deviation from the training distributions, allowing us to

evaluate the controllers’ robustness to distributional shifts in parameters.
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To train the baseline controller, we compute the average mass m̃ and the average damping

b̃ from the five offline samples. These average values are then used in the baseline system

dynamics and the loss function (5.33) to learn the baseline controller and Lyapunov function pair.

In contrast, for training the DR controller, we set the Wasserstein radius to r = 0.01

and the risk tolerance to ϵ = 0.1. The 5 uncertainty samples {ξi}5i=1 are then used in the loss

function (5.20) to learn the DR controller and its corresponding Lyapunov function. Fig. 5.4

illustrates the performance of the baseline and DR controllers with the test uncertainty parameters

ξ1 = 0.1 and ξ2 = 0.05. To assess the controllers’ performance, we randomly sample 10 initial

states within the box region defined by 0 ≤ θ ≤ 2π and −6 ≤ θ̇ ≤ 6. Each controller is applied

to the system and the resulting trajectories are simulated. In Fig. 5.4a, we observe that the

baseline controller, trained using only the average mass and damping values, fails to stabilize the

inverted pendulum system to the desired upright equilibrium. For all the 10 initial states, the

baseline controller’s trajectories converge to states that are not the desired equilibrium. This can

be attributed to the increased damping (ξ2 = 0.05) and the heavier pendulum mass (ξ1 = 0.1) in

the test scenario. The baseline controller, designed based on the average parameter values, lacks

the necessary robustness to compensate for the increased damping and mass.

On the other hand, Fig. 5.4b shows that all trajectories converge to the desired equilibrium

under the DR controller. Despite the presence of distributional shift in the model uncertainty,

the DR controller successfully stabilizes the inverted pendulum in an upright position. This

robustness can be attributed to the DR controller’s training process, which explicitly takes

into account the distributional information of the uncertainty and optimizes for worst-case

performance within the constructed ambiguity set.

We have presented an approach for jointly synthesizing distributionally robust controllers

and Lyapunov certificates for nonlinear systems with model uncertainty. Our key contribution is a

distributionally robust Lyapunov stability formulation that leverages finite samples of uncertainty

parameters to stabilize uncertain systems with theoretical guarantees. Through theoretical

analysis and experimental validation on the inverted pendulum, we demonstrated that the learned
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controller achieves asymptotic stability with high probability, even under out-of-distribution

model uncertainties.

However, we observe that co-training Lyapunov functions and policies becomes challeng-

ing under tight control constraints. Classical Lyapunov methods typically fail in such settings,

certifying stability only in small regions near equilibrium due to insufficient control authority to

guarantee negative definiteness of the Lyapunov derivative across the full state space. Policies

derived directly from Lyapunov functions often become trapped in local minima or fail to generate

adequate control for global stabilization.

In contrast, reinforcement learning algorithms [53,131] demonstrate remarkable flexibility

under constraints, discovering creative strategies that exploit system dynamics—such as strategic

pendulum swinging to leverage gravity before stabilization. This suggests the potential value of

combining Lyapunov guarantees with the flexibility of learned policies.

5.2 Generalized Lyapunov Theory for Neural Policy Certifi-
cation

The limitations of classical Lyapunov methods under control constraints motivate

exploring alternative stability certification approaches that can handle the practical flexibility

of reinforcement learning policies. While the distributionally robust approach presented in the

previous section addresses model uncertainty, it still relies on the restrictive requirement of strict

pointwise decrease in the Lyapunov function. This constraint often makes it difficult to certify

stability for policies learned through optimal control or reinforcement learning, particularly when

control authority is limited or when the value function naturally exhibits non-monotonic behavior

due to discounting effects.

Building on prior work on generalized Lyapunov functions [48, 49], we develop a

comprehensive framework for certifying the stability of learned control policies. Our key insight

is that value functions from optimal control and RL, while not directly satisfying classical
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Lyapunov conditions, can be systematically augmented with learned residual terms to form

valid stability certificates. We replace the strict stepwise decrease requirement with a more

flexible multi-step weighted decrease criterion, enabling certification of a broader class of control

policies.

Our main contributions in this section include:

• Theoretical analysis showing how discounted value functions from LQR can be augmented

to satisfy generalized Lyapunov conditions via a new set of linear matrix inequalities that

significantly reduce conservatism compared to classical approaches.

• A practical framework for certifying nonlinear RL policies by augmenting their value

functions with neural network residual terms and learning state-dependent multi-step

weights.

• Joint synthesis methodology that simultaneously optimizes control policies and their

stability certificates, yielding larger certified regions of attraction than classical one-step

Lyapunov methods.

This generalized framework offers several key advantages: it allows temporary increases

in the Lyapunov function over individual time steps provided the weighted average decreases

over a finite horizon, it directly leverages value functions learned by RL algorithms as building

blocks for stability certificates, and it enables joint optimization of both control policies and their

corresponding certificates. This approach bridges the gap between classical control theory’s

stability guarantees and modern learning-based control methods’ practical effectiveness.

We consider the discrete-time system:

xk+1 = f(xk,uk), xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, (5.39)

where X is open and f : X × U → X is locally Lipschitz. A control policy π : X → U for the
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system can be obtained by solving an infinite-horizon discounted optimal control problem:

J∗
γ (x0) = min

π
Jπ
γ (x0) :=

∞∑
k=0

γk ℓ(xk,π(xk)),

s.t. xk+1 = f(xk,π(xk)), xk ∈ X , π(xk) ∈ U ,

(5.40)

where γ ∈ (0, 1) is a discount factor and ℓ(x,u) is a stage cost (or reward in the case of

maximization), specifying the performance criterion.

Optimal control and reinforcement learning methods usually solve a problem like (5.40)

to obtain a policy π and associated value function Jπ
γ . We consider a deterministic problem in

our theoretical development for simplicity. Note that, while reinforcement learning methods

work with stochastic control policies during training, only the mode of the final trained policy is

used at test time, allowing us to treat it as deterministic.

Given a policy π, we are interested in certifying whether it stabilizes the closed-loop

system:

xk+1 = f(xk,π(xk)). (5.41)

We assume π(0n) = 0m, f(0n,0m) = 0n, ℓ(0n,0m) = 0, and 0n ∈ X , so that the origin is an

equilibrium point of the system. Stability can be certified by identifying a Lyapunov function.

Definition 5.2.1 (Lyapunov Function). Consider the closed-loop system (5.41). A continuous

function V : X → R≥0 is a Lyapunov function if it satisfies:

V (0n) = 0, V (x) > 0 ∀x ∈ X \ {0n}, (5.42a)

V
(
f(x,π(x))

)
− V (x) < 0 ∀x ∈ X \ {0n}. (5.42b)

Lyapunov functions certify the asymptotic stability of the system, as stated in the following

result.

Theorem 5.2.2 (Asymptotic Stability via a Lyapunov Function [78, Theorem 3.3]). If there
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exists a Lyapunov function V as in Definition 5.2.1, then the origin x = 0n is an asymptotically

stable equilibrium of the system (5.41).

When π arises from (5.40), the corresponding value function Jπ
γ is also available. We

are interested in whether Jπ
γ can itself certify the stability of (5.41) or assist in constructing a

certificate.

5.2.1 Lyapunov Stability Analysis for Linear Quadratic Problems

To understand the relationship between a discounted value function Jπ
γ obtained from

(5.40) and a Lyapunov function V certifying stability of the closed-loop system (5.41), we first

study a simple setting with a linear system and quadratic stage cost.

Consider the discrete-time linear system:

xk+1 = Axk +Buk, (5.43)

where xk ∈ Rn, uk ∈ Rm, and A, B are known constant matrices.

Choosing the stage cost in (5.40) as ℓ(x,u) = x⊤Qx+ u⊤Ru with Q = C⊤C ⪰ 0 and

R ≻ 0 leads to the discounted LQR problem [10]. The optimal value function J∗
γ (x) = x⊤Pγx

is quadratic, where Pγ solves the discounted Algebraic Riccati Equation (ARE):

Pγ = A⊤(Pγ −PγB
(
γB⊤PγB+R

)−1
B⊤Pγ

)
A+Q. (5.44)

The corresponding optimal feedback gain is K⋆
γ = −(γB⊤PγB+R)−1B⊤PγA, which yields

the policy π∗
γ(xk) = K⋆

γxk.

Under this policy, the closed-loop system evolves as

xk+1 = F∗
γxk, where F∗

γ = A+BK⋆
γ. (5.45)

Although J∗
γ satisfies the discounted Bellman equation, it is well understood that it does
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not guarantee Lyapunov decrease due to γ ∈ (0, 1) [38]. Moreover, verifying stability by directly

analyzing the eigenvalues of F∗
γ and solving the discounted ARE (5.44) is nontrivial due to

its nonlinear dependence on γ. This motivates the idea [119] of constructing valid Lyapunov

functions by augmenting J∗
γ with a residual term. To formalize this, we first state standard

assumptions that ensure the existence of a stabilizing policy and a well-defined value function.

Assumption 5.2.3. The pair (A,B) is stabilizable and the pair (A,C) is detectable.

The following result shows the existence of a Lyapunov certificate derived from the value

function.

Theorem 5.2.4 (Lyapunov Stability via LMIs for Discounted LQR [119]). Suppose Assump-

tion 5.2.3 holds. Consider an optimal policy π∗
γ and value function J∗

γ obtained from the LQR

problem with discount γ. Let P denote the solution to the undiscounted ARE in (5.44) (with

γ = 1). If there exist symmetric positive definite matrices S0,S1 ≻ 0 and scalars ϖ,α > 0 such

that: A⊤S0A− S0 + S1 −ϖQ A⊤S0B

B⊤S0A B⊤S0B−ϖR

 ⪯ 0, αP ⪯ S1, (5.46)

then the function V (x) := J∗
γ (x) +

1
ϖ
x⊤S0x is a Lyapunov function for the closed-loop

system (5.45), and certifies global exponential stability for any discount factor satisfying

γ > ϖ
ϖ+α

.

Theorem 5.2.4 shows that while the discounted value function J∗
γ may not satisfy the

Lyapunov condition on its own, it can be modified into a valid certificate when γ is sufficiently

large. The required residual term and a computable lower bound on γ are obtained by solving a

set of LMIs. However, this bound is often conservative compared to the true stability threshold

γ∗ obtained by analyzing the closed-loop dynamics via the discounted ARE, as illustrated in the

following example.

131



Example 5.2.5 ([119, Example 1]). Consider the scalar system xk+1 = 2xk + uk with stage cost

ℓ(x, u) = x2 + u2. The optimal policy is uk = K⋆
γxk, where

K⋆
γ = −2

(
1 + 2

(
5γ − 1 +

√
(5γ − 1)2 + 4γ

)−1)−1
.

The closed-loop multiplier is F ∗
γ = 2 +K⋆

γ , and the origin is globally exponentially stable if

and only if |F ∗
γ | < 1, which is equivalent to γ > γ∗ = 1/3. However, applying the LMIs from

Theorem 5.2.4 yields a feasible solution for γ > 0.8090, which is significantly more conservative.

Example 5.2.5 highlights the limitation of classical Lyapunov analysis and motivates

the development of an alternative formulation with less conservative conditions for certifying

stability.

5.2.2 Generalized Lyapunov Stability and Applications to Linear
Systems

Building on the observation from Example 5.2.5, we introduce a generalized notion of

Lyapunov stability [48, Definition 2.2] that relaxes the classical pointwise decrease condition.

Definition 5.2.6 (Generalized Lyapunov Function). Consider the closed-loop system in (5.41).

A continuous function V : X → R≥0 is a generalized Lyapunov function if it satisfies (5.42a)

and there exist an integer M ∈ N>0 and state-dependent non-negative weights σ1(x), . . . , σM(x)

such that
1

M

M∑
i=1

σi(x) ≥ 1, (5.47)

and, for any x ∈ X \ {0n}, the following generalized decrease condition holds:

1

M

M∑
i=1

σi(x)V (xi)− V (x) < 0, (5.48)

where xi+1 = f(xi,π(xi)) with x0 = x.
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Condition (5.48) generalizes the decrease requirement in (5.42b) by allowing temporary

increases in V over individual steps, provided that its weighted average decreases over a finite

horizon of length M . We state the stability guarantee provided by a generalized Lyapunov

function in the next theorem.

Theorem 5.2.7 (Asymptotic Stability via a Generalized Lyapunov Function). Consider

the closed-loop system in (5.41), and assume the policy π is Lipschitz on X . If there exists

a generalized Lyapunov function V : X → R≥0 as in Definition 5.2.6, then x = 0n is an

asymptotically stable equilibrium.

Returning to the LQR setting in Section 5.2.1, we consider certifying the stability of

(5.45) via a generalized Lyapunov function. Building on Theorem 5.2.4, we augment J∗
γ with a

quadratic residual and require the composite function to satisfy (5.48), leading to a new set of

LMIs for stability certification.

Theorem 5.2.8 (Generalized Lyapunov Stability for Discounted LQR via LMIs). Suppose

Assumption 5.2.3 holds. Consider an optimal policy π∗
γ and value function J∗

γ obtained from

the LQR problem with discount γ. Let P denote the solution to the undiscounted ARE in

(5.44) (with γ = 1). If there exist symmetric positive definite matrices S0,S1, . . . ,SM , scalars

ϖ,α1, . . . , αM > 0, and weights σ1, . . . , σM ≥ 0 satisfying
∑M

i=1 σi ≥M , such that:

σ1

M
A⊤S0A− S0 + S1 −ϖQ σ1

M
A⊤S0B

σ1

M
B⊤S0A

σ1

M
B⊤S0B−ϖR

 ⪯ 0, (5.49a)

σi+1

M
A⊤S0A− Si+1 −ϖQ σi+1

M
A⊤S0B

σi+1

M
B⊤S0A

σi+1

M
B⊤S0B−ϖR

 ⪯ 0, ∀i = 1, . . . ,M − 1, (5.49b)

αiP ⪯ Si, ∀i = 1, . . . ,M, (5.49c)
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then the function

V (x) := J∗
γ (x) +

1

ϖ
x⊤S0x (5.50)

is a generalized Lyapunov function in the sense of Definition 5.2.6 (with constant weights), and

certifies that the origin is globally exponentially stable for the closed-loop system (5.45), provided

that:

γ > max

(
σMϖ

MαM

, . . . ,
σ2ϖ

Mα2

,
σ1ϖ

M(ϖ + α1)

)
. (5.51)

Remark 5.2.9 (Feasibility of Multi-Step LMIs). Note that when σ1 = M and σi = 0 for all

2 ≤ i ≤M , Theorem 5.2.8 recovers the classical Lyapunov result in Theorem 5.2.4. Therefore,

if the original one-step LMIs (5.46) are feasible, then feasible solutions for (5.49) also exist.

Remark 5.2.10 (Choice of σi Weights). While the multi-step formulation enables optimizing the

weights σ1, . . . , σM to minimize the certified lower bound on γ in (5.51), finding globally optimal

weights is challenging due to its non-convexity nature. In practice, heuristics such as grid search

for small M and random sampling with local refinements for larger M are sufficient to achieve

noticeable improvements over the one-step baseline.

Example 5.2.11 (Example 5.2.5 Revisited). We illustrate the benefits of the generalized multi-

step LMIs from Theorem 5.2.8 in Example 5.2.5. We first focus on the case M = 2. Figure 5.5

shows how the certified bound on γ varies with the choice of weights σ1 and σ2, constrained by

σ1+σ2 = 2. Since the undiscounted value function (γ = 1) satisfies the Lyapunov condition, this

bound is capped at γ = 1. The classical Lyapunov setting (σ1, σ2) = (2, 0) yields a conservative

bound of γ > 0.8090, whereas optimizing over σ1 and σ2 improves the bound to γ > 0.6229

at (σ1, σ2) = (1.54, 0.46). Another important observation is that increasing M significantly

reduces the certified lower bound on γ, progressively approaching the true stability threshold

γ⋆ = 1/3, as shown in Figure 5.6.
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Figure 5.5. Certified γ bound for M = 2. Figure 5.6. Certified γ bound versus M .

5.2.3 Nonlinear Systems and Stability Certification of RL Policies

Inspired by the treatment of linear systems described in Section 5.2.2, we formulate an

approach to certify stability of policies for nonlinear systems obtained by RL using a generalized

Lyapunov function. The key observation from Theorem 5.2.8 is that augmenting the optimal

value function with a residual term can result in a valid generalized Lyapunov function, as in

(5.50). Here, we use the same idea to form generalized Lyapunov functions for nonlinear systems

with unknown dynamics, which is a problem considered by RL. The value function and policy

obtained by an RL algorithm are typically parameterized by neural networks. Let πRL be a

pre-trained RL policy (e.g., obtained by [53, 61, 131]), and let JπRL
γ denote its corresponding

learned value function. We consider a generalized Lyapunov candidate as:

V (x;θ1) = JπRL
γ (x) + φ(x;θ1), (5.52)

where φ(x;θ1) is a neural residual correction. To allow more flexibility in the generalized

Lyapunov condition (5.48), we introduce a step-weighting network σ(x;θ2) ∈ RM
≥0 that outputs

non-negative weights over a rollout horizon of length M . The weights are required to satisfy∑M
i=1 σi(x;θ2) ≥ M . These weights are then used to construct the generalized Lyapunov
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decrease condition:

F (xk) :=
1

M

M∑
i=1

σi(xk;θ2)V (xk+i;θ1)− (1− ᾱ)V (xk;θ1), (5.53)

where ᾱ ∈ (0, 1) is a user-specified decay parameter. We train the networks φ(·;θ1) and σ(·;θ2)

jointly by minimizing a loss that penalizes violations of the generalized Lyapunov condition:

L(θ1,θ2) :=
1

N

N∑
i=1

ReLU
(
F (x

(i)
k )
)
, (5.54)

where {x(i)
k }Ni=1 are sampled initial states.

Remark 5.2.12 (Network Architecture). In practice, the learned value function JπRL
γ may not be

optimal, hence, may not satisfy JπRL
γ (0n) = 0. To ensure that the generalized Lyapunov candidate

satisfies V (0n;θ1) = 0 and is positive definite, we modify (5.52) as:

V (x;θ1) :=
∣∣JπRL

γ (x)− JπRL
γ (0n)

∣∣+ |φ(x;θ1)− φ(0n;θ1)|+ β∥x∥2, (5.55)

where β > 0 is a small constant (the term β∥x∥2 enforces strict positive definiteness for x ̸= 0n

and improves numerical stability near the origin.) The step-weighting network σ(x;θ2) ∈ RM
≥0

ends with a softmax layer scaled byM , ensuring the output weights satisfy 1
M

∑M
i=1 σi(x;θ2) = 1.

Remark 5.2.13 (Equilibrium Behavior). In practice, RL policies often converge to a neigh-

borhood near the origin rather than the origin itself. Thus, we train and verify the generalized

Lyapunov condition over the set X \ B(0n; δ), where B(0n; δ) denotes a ball of radius δ around

the origin.

Training and Evaluation Setup. We evaluate our method on two standard RL control

benchmarks from Gymnasium [138] and the DeepMind Control Suite [137]. RL policies πRL

and their corresponding value functions JπRL
γ are trained using implementations from [61, 122].
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We collect a total of N rollout trajectories by simulating the closed-loop system under πRL, with

each trajectory τ (i) = {x(i)
k }Mk=0 starting from a randomly sampled initial state x

(i)
0 .

Inverted Pendulum Swingup. We consider the inverted pendulum environment from

[138] with parameters m = 1, l = 1, g = 10, and control limits |u| ≤ mgl
5

= 2. The state space

is [−π, π)× [−8, 8]. Due to tight torque limits, the pendulum must swing back and forth to build

momentum before reaching the upright position. This makes it challenging to synthesize a policy

with a Lyapunov certificate valid over the entire state space. Prior work [97, 151] has shown that

regions where stability can be verified are typically restricted to small neighborhoods near the

upright position, failing to cover the full swing-up trajectories. In contrast, modern RL policies

can discover effective swing-up behaviors but lack stability guarantees. Our method bridges this

gap: we take a trained SAC policy [53] and apply our generalized Lyapunov function training with

M = 15. Figure 5.7 shows the generalized Lyapunov function values along several trajectories

from different initial states. As expected, the function exhibits non-monotonic behavior but

shows an overall decline over the planning horizon. Figure 5.8 visualizes the Lyapunov function

across the state space. Figure 5.9 plots the residual F (xk) defined in (5.53), verifying that the

generalized decrease condition is satisfied throughout the domain.

Figure 5.7. Generalized Lya-
punov function values along tra-
jectories.

Figure 5.8. Generalized Lya-
punov function value over the state
space.

Figure 5.9. Generalized Lya-
punov decrease condition.

Cartpole Swingup. We consider the cartpole swing-up task from [137]. The system state

is represented as [x, cos(θ), sin(θ), ẋ, θ̇], where x is the cart position, θ is the pole angle, and the

remaining terms are their velocities. The goal is to swing the pole upright θ = 0 and stabilize the
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position at x = 0. We use a TD-MPC policy [61] and apply our certificate training (5.54) with

M = 20. Figure 5.10 visualize the generalized Lyapunov condition across three representative

2D slices of the state space, with the remaining two states fixed at zero. The generalized decrease

condition is satisfied throughout these slices, suggesting asymptotic stability of the RL policy.

Figure 5.10. Generalized Lyapunov decrease condition for the cartpole swing-up using a TD-MPC policy.

In addition to qualitative visualizations, we quantitatively evaluate our learned certificates

by sampling Ntest states from the full state space and checking whether (5.53) is satisfied. For

each environment, we train certificates for multiple RL policies (the PPO policy fails to stabilize

the cartpole from some initial states). As shown in Table 5.2, the condition holds for all test

states in both environments.
Table 5.2. Percentage of sampled test states satisfying F (xk) ≤ 0 under different RL policies.

Environment RL Methods M Ntest % Satisfying F (xk) ≤ 0

Inverted Pendulum PPO, SAC, TD-MPC 15 10,000 100%
Cartpole SAC, TD-MPC 20 1,000,000 100%

5.2.4 Joint Synthesis of Stable Neural Policies and Generalized Certifi-
cates

So far, we addressed the certification of stability for fixed pre-trained control policies.

In this section, we consider joint synthesis of neural controllers and Lyapunov certificates and

employ formal verification inspired by [24, 33, 145, 151]. We demonstrate that our generalized

Lyapunov approach integrates naturally into this setting by replacing the standard one-step
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decrease condition with the proposed multi-step, weighted formulation in (5.48).

Definition 5.2.14 (Region of Attraction). The region of attraction (ROA)R ⊆ Rn of the (locally

asymptotically stable) origin for the discrete-time system (5.41) is the set of all points from which

the system trajectory converges to the origin, i.e., x0 ∈ R implies limk→∞ xk = 0n.

In general, precise characterizations of R are challenging to obtain and one instead

looks for suitable approximations. Here, we seek to jointly learn a policy π(x;ϕ) and a

certificate function V (x;θ1) such that the closed-loop system xk+1 = f(xk,πϕ(xk)) is provably

asymptotically stable and obtain at the same time an inner approximation S of the ROAR. [151]

formalized it as a constrained optimization that maximizes the volume of a Lyapunov sublevel

set S = {x ∈ Rn : V (x) ≤ ρ} under Lyapunov constraints

max
θ1,ϕ

Vol(S) (5.56a)

s.t. V (0n;θ1) = 0, V (x;θ1) > 0 ∀x ∈ S \ {0n}, (5.56b)

V (xk+1;θ1)− (1− ᾱ)V (xk;θ1) ≤ 0 ∀xk ∈ S, (5.56c)

where ᾱ ∈ (0, 1) is a user-specified decay parameter. To utilize a generalized Lyapunov

function, we replace (5.56c) with the generalized M -step condition for each xk ∈ S, with∑M
i=1 σi(xk) ≥M :

F (xk) :=
1

M

M∑
i=1

σi(xk)V (xk+i;θ1)− (1− ᾱ)V (xk;θ1) ≤ 0, σi(xk) ≥ σ > 0, (5.57)

where σ ∈ R>0 is a uniform lower bound on the weights. The condition (5.57) enables learning

certificates that tolerate non-monotonic behavior along a trajectory, but it no longer guarantees

that S is forward invariant. However, as Theorem 5.2.15 shows, S still defines a valid inner

approximation of the ROA and guarantees asymptotic stability of the origin.
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Theorem 5.2.15 (Asymptotic Stability Relative to S). If the optimization problem (5.56) is

solved with the generalized condition (5.57) instead of (5.56c), then S ⊂ R.

Training Formulation. Following [151], we reformulate the problem (5.56) into a

learning objective by sampling states xk ∈ X and penalizing violations of the Lyapunov

conditions using soft constraints. For each xk ∈ D, we simulate M forward steps under the

closed-loop dynamics and compute the generalized Lyapunov residual F (xk) as defined in (5.57).

To enforce stability and domain constraints, we define the stability loss:

Lstab(xk) := ReLU (min {ReLU(F (xk)) + c0H(xk), ρ− V (xk,θ1)}) , (5.58)

where H(xk) :=
∑M

i=1 ∥ReLU(xk+i − xup) + ReLU(xlo − xk+i)∥1 penalizes violations of the

bounded domain X = {x | xlo ≤ x ≤ xup}. The inner min ensures that the generalized

Lyapunov decrease condition is only enforced inside the certified region S.

To expand the certifiable region, [151] proposed a surrogate region loss Lregion :=∑N
j=1 ReLU (V (xj;θ1)/ρ− 1), where the candidate states xj are obtained via random boundary

sampling or projected gradient descent (PGD) to minimize V (·;θ1). PGD is also used for

falsification by maximizing stability violations, generating additional training states for D.

The final training objective is L(θ1,ϕ) :=
∑

xk∈D Lstab(xk) + c1Lregion + c2∥θ1,ϕ∥1,

where D contains states sampled randomly and generated by falsification.

Remark 5.2.16. Although the theoretical framework (Theorem 5.2.7) supports trainable weights

σi(xk), including neural network parameterizations (see Section 5.2.3), certifying stability under

jointly learned controllers, Lyapunov functions, and weights remains computationally challenging

with existing tools [51, 142]. In practice, we fix σi during training. For small values of M , we

select the best-performing weight configuration via a simple grid search.

Verification Formulation. After training, we verify that the generalized decrease

condition holds within X using the α-β-CROWN verifier [142]. We formally certify Lyapunov
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stability of the origin if the following holds for all xk ∈ X :

(
−F (xk) ≥ 0 ∧

M∧
i=1

xk+i ∈ X
)
∨ (V (xk) ≥ ρ) . (5.59)

As Theorem 5.2.15 implies, if (5.59) holds for allxk ∈ X , thenS is an inner approximation

ofR.

Evaluation. We evaluate our generalized Lyapunov synthesis approach on three systems

presented in [151]: inverted pendulum, path tracking, and 2D quadrotor (with a 6D state space).

Figures 5.11 and 5.12 show the certified stability regions S for different horizon lengths

M . We use fixed step weights (σ1, σ2, . . . ) selected via grid search: for the inverted pendulum,

(0.4, 1.6) for M=2 and (0.3, 1.5, 1.2) for M=3; for path tracking, (0.4, 1.6) and (1.2, 1.2, 0.6),

respectively. As shown in the figures, multi-step training and verification yields consistently

larger certifiable ROAs.

Figure 5.11. Certified ROAs for inverted pen-
dulum. Figure 5.12. Certified ROAs for path-tracking.

Table 5.3 presents the quantitative results, including the volume of S and verification

time. The volume is estimated via Monte Carlo integration: we sample n = 106 points in X and

compute the fraction satisfying V (x) ≤ ρ, averaged over 10 trials and scaled by the total domain

volume. While our generalized stability formulation leads to consistently larger certified regions,

it incurs longer formal verification time due to the need to bound multiple intermediate states and
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their weighted combinations, leading to more complex bound computations and more branching

decisions.

Table 5.3. Certified region volume (left) and verification time (right) under different M -step Lyapunov
training.

System M = 1 M = 2 M = 3

Inverted Pendulum 42.87 76.68 89.59
Path Tracking 21.81 23.42 23.93
2D quadrotor 103.26 109.45 113.53

(a) Certified ROA volume (S).

System M = 1 M = 2 M = 3

Inverted Pendulum 11.54 22.42 39.87
Path Tracking 8.53 19.61 36.26
2D quadrotor 2209.75 3824.19 5657.86

(b) Verification time (seconds).

This chapter has presented a comprehensive framework for stability certification under

uncertainty, bridging the gap between classical control theory’s theoretical rigor and modern

learning-based control’s practical effectiveness. We have addressed the fundamental challenge

of providing stability guarantees for uncertain systems with neural network controllers. Our

distributionally robust formulations successfully extend classical Lyapunov analysis to handle

model uncertainties without requiring exact knowledge of uncertainty distributions, while

our generalized Lyapunov framework enables certification of high-performance reinforcement

learning policies that would otherwise resist traditional stability certificate construction.

By replacing strict pointwise decrease requirements with flexible multi-step weighted

criteria and incorporating distributional robustness directly into certificate construction, this work

establishes a principled pathway for deploying neural network controllers in real-world robotic

applications while maintaining the performance advantages that make learning-based control

so compelling. The integration of sum-of-squares programming, neural network optimization,

and formal verification techniques creates a versatile toolkit that can adapt to different system

complexities and uncertainty structures, ultimately enabling the confident deployment of intelligent

autonomous systems in uncertain real-world environments.

Chapter 5, in full, is a reprint of the material as it appears in Distributionally Robust

Lyapunov Function Search Under Uncertainty, K. Long, Y. Yi, J. Cortés, and N. Atanasov,

Learning for Dynamics and Control Conference, 2023; Distributionally Robust Policy and
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Lyapunov-Certificate Learning, K. Long, J. Cortés, and N. Atanasov, IEEE Open Journal

of Control Systems, 2024; and Generalized Lyapunov Stability for Certified Control and

Reinforcement Learning, K. Long, J. Cortés, and N. Atanasov, under review, 2025. The

dissertation author was the primary researcher and author of these works.
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Chapter 6

Conclusions and Future Work

This thesis has investigated the problem of certifiable robot autonomy under uncer-

tainty, with a focus on learning- and optimization-based methods that provide formal guarantees.

The key contributions span both theoretical and algorithmic developments, including robust and

probabilistic formulations of safe control, distributionally robust safety filters for robot control,

and neural stability certificates with Lyapunov-stable policies. Through extensive simulations and

experiments on ground mobile robots and 6-dimensional manipulators, this work demonstrates

that robots can achieve safe, efficient, and theoretically grounded autonomy in complex and

dynamic environments while handling various sources of uncertainty.

6.1 Summary of Contributions

This thesis merges control-theoretic rigor with learning-based representations to address

the fundamental challenge of safe, stable, and efficient robotic control under uncertainty. In

particular, I extend classical certificate functions (e.g., CBFs, CLFs) to robust, probabilistic,

and distributionally robust formulations, and demonstrate their efficacy across various robotic

systems in complex and dynamic environments. I also presented results

6.1.1 Safe Control under Uncertainty

Ensuring safe control under uncertainty remains a core challenge for autonomous robot

systems. Control barrier functions (CBFs) provide a principled, real-time method for enforcing
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safety in control-affine systems by solving a quadratic program that adjusts nominal inputs to

maintain forward invariance of a safe set. Due to their computational efficiency, CBFs have

been successfully deployed across robotic domains. However, most early work assumes that

the CBF, system dynamics, and robot states are precisely known, which is often invalid in

real-world deployments with noisy onboard sensors. My research addresses these limitations by

systematically incorporating sensor noise, dynamic inaccuracies, and state estimation errors into

the CBF framework. A central challenge in safe control synthesis is obtaining accurate, efficient

geometric representations of both the environment and the robot itself.

In [101], I tackled this by using neural networks to learn a signed distance function

(SDF) of obstacles from onboard sensor data. Unlike conventional approaches that assume a

priori known barriers, my method incrementally learns the SDF using range measurements.

By explicitly taking the estimation error bounds of the learned SDF and its gradient into

account, I formulated a robust control barrier constraint, which led to a novel second-order cone

programming formulation for safe control synthesis. Building on this, I extended my research

to consider uncertainty not only in environment perception but also in neural system dynamics

approximations [98]. I developed both probabilistic and robust formulations of CBF constraints,

allowing the control synthesis problem to handle uncertainty in both barrier function and system

dynamics estimates.

Although other recent work has also considered uncertainty in CBF-based safety filters,

they often address a single source (e.g., model or barrier error) in isolation. In contrast, real-world

robots face compounded uncertainties from various sources (e.g., localization, sensor, geometry

estimations), which interact in nonlinear ways and are hard to model explicitly. This motivates my

use of distributionally robust optimization (DRO), which handles multiple uncertainties without

requiring precise bounds or distributions. DRO circumvents the need for explicit uncertainty

models by operating directly on sampled data, such as LiDAR hits or states from standard

estimators. By enforcing a chance constraint over a Wasserstein ambiguity set, it avoids restrictive

distributional assumptions. At the same time, simplistic robot shapes (e.g., circles or spheres)
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often over-constrain feasible motions, particularly for manipulators. Recent work instead uses

neural SDFs and configuration-space distance functions to capture complex geometries more

accurately, but these neural representations introduce uncertainties that are difficult to quantify,

reinforcing the need for a distributionally robust approach.

In my work [99, 104, 105], I propose a novel distributionally robust control barrier

constraint that systematically accounts for uncertainties in state estimation, system dynamics,

sensor measurements, and neural shape representations. Critically, the resulting safe control

synthesis problem can be reformulated as a quadratic program. I validate this approach on both

ground mobile robots and 6-dimensional manipulators, demonstrating safe, efficient control

under uncertainty in cluttered, dynamic environments.

6.1.2 Stability Certification for Neural Policies

The third major contribution of my research connects reinforcement learning (RL) with

formal stability guarantees. While modern RL policies achieve impressive performance, they

typically lack stability certificates, which limits their applicability in safety-critical domains.

Most prior work assumes deterministic models, leaving open the problem of analyzing Lyapunov

stability and synthesizing stable controllers in the presence of model uncertainty.

To address this challenge, I combine Lyapunov-based stability principles with distribu-

tionally robust optimization (DRO), enabling the synthesis of neural controllers and certificates

that remain valid under uncertainty. In [103], I introduce the concept of a distributionally robust

Lyapunov function (DR-LF) for closed-loop systems with parametric uncertainty. The DR-LF

search is formulated both as a sum-of-squares (SOS) program and as a neural network optimization

problem, providing a scalable framework for certifying stability in probability. Building on this

work, [97] extends the approach to jointly learn neural stabilizing controllers and Lyapunov

certificates for uncertain nonlinear systems. However, we find that joint training is challenging for

underactuated systems with limited control bounds, whereas RL with carefully designed rewards

can still produce high-performance policies. This insight motivates our subsequent work.
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In [96], I study stability certification for closed-loop systems under policies obtained

from optimal control and RL. We make two key observations: first, a policy’s value function

can be augmented with a residual term to form a valid stability certificate; second, the classical

step-wise Lyapunov decrease condition can be relaxed to a multi-step weighted criterion. This

leads to the concept of a generalized Lyapunov function, where the value function is augmented

with a residual neural network and the generalized decrease condition is enforced by optimizing

state-dependent weights. This relaxation makes it possible to certify the stability of modern

RL policies and also supports joint training of controllers and certificates using a multi-step

Lyapunov loss, resulting in substantially larger certified regions of attraction.

6.2 Limitations and Open Challenges

While the methods presented in this thesis advance the state of the art in stability

certification and uncertainty-aware safety-critical control, several limitations remain that open

opportunities for future research.

1. Pointwise Probabilistic Safety Guarantees. The probabilistic safety guarantees provided

in this work are primarily pointwise, ensuring that individual states satisfy safety constraints

with a specified probability. Extending these notions to trajectory-wise probabilistic safety,

where the entire execution satisfies the safety requirement with high probability, remains

an open challenge.

2. Feasibility and Myopic Behavior in CBF Approaches. Control Barrier Function (CBF)

formulations can suffer from feasibility issues, especially in scenarios with multiple safety

constraints or under limited control bounds. Besides, the inherently myopic nature of many

CBF-based controllers often leads to conservative actions that maintain safety but sacrifice

long-term performance. Designing controllers that balance safety with performance over

extended horizons remains an unresolved problem.
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3. Generality Across Systems and High-Dimensional Applications. Constructing valid

CBFs or stability certificates for arbitrary nonlinear and high-dimensional systems remains

a difficult task. The methods developed here have been demonstrated on representative

systems, but scaling them to robots with many degrees of freedom or to domains with

complex, hybrid dynamics is still challenging.

4. Safety Notions Beyond Collision Avoidance. Many real-world robotic tasks require safety

concepts that are difficult to formalize, such as ergonomic constraints in human–robot

collaboration, thermal limits, energy budgets, or mission-specific operational envelopes.

Extending safety-aware control frameworks to handle such abstract or task-dependent

notions remains largely unexplored.

5. Semantic and Language-Conditioned Safety. In principle, safe sets or CBFs should

be definable not only from geometric and physical constraints, but also from semantic

information or high-level task descriptions. Extending safety-aware control to incorporate

semantic cues, natural language instructions, and context-dependent safety specifications

is an open and exciting research direction.

6. Integration with High-Level Task and Motion Planning. Most of the presented

approaches operate at the control or local planning level, without tight integration with

symbolic task planners or high-level decision-making frameworks. This limits their

applicability in long-horizon, multi-stage tasks where safety must be coordinated across

task execution, sequencing, and re-planning.

6.3 Future Work

Building on the foundations established in this thesis, I identify three primary research

directions that I am particularly excited to pursue and that I believe are worthy of broader

investigation by the community.
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6.3.1 Optimality and Stability

While optimal control and reinforcement learning (RL) optimize long-term performance,

they typically lack formal stability guarantees, or more broadly, a principled explanation of why

the resulting policy behaves well, even within a region of interest. Lyapunov-based methods

provide a foundation for formal stability certification, but constructing and scaling them to

complex, high-dimensional systems remains challenging. Our work on generalized Lyapunov

functions [96] bridges this gap by augmenting an RL policy’s value function with a residual

neural network and verifying stability through relaxed, multi-step decrease conditions.

A promising direction is to use certificate structures not only for post hoc verification,

but also as part of the policy learning process. The objective is to embed stability constraints

directly into training, so that the learned value function simultaneously serves as both the optimal

value function and a stability certificate. Achieving this vision will require new multi-objective

optimization formulations that balance performance and stability, curriculum learning strategies

that progressively tighten stability requirements, and theoretical analyses linking value function

structure to Lyapunov properties.

Several key research questions arise:

• How can reward functions be designed to naturally promote stability in the resulting policy?

• What approaches most effectively balance the objectives of optimality and stability during

training?

• How can these methods be generalized to uncertain or stochastic systems?

• Can concepts such as robustness or input-to-state stability be leveraged to reason about the

sim-to-real gap?

Pursuing these questions has the potential to influence a broad class of control and RL

algorithms, improving not only performance but also interpretability and formal certification.
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Such developments would be particularly impactful in safety-critical domains, including house-

hold robotics, aerospace systems, and human–robot collaboration, where both stability and

explainability are essential for deployment.

6.3.2 Open-World and Contact-Rich Safety

Many existing safety filters focus on collision avoidance or other well-defined geometric

constraints. While important, these approaches address only part of the safety challenges

robots face in realistic environments. Two additional dimensions are particularly critical. First,

open-world safety refers to the ability to operate in environments with incomplete or evolving

knowledge, where safety depends on both geometric constraints and semantics. This includes

behaviors such as adapting pouring strategies to avoid spills, slowing down when handling

hazardous materials, or seeking clarification when task objectives are ambiguous. Second,

contact-rich safety extends beyond geometric clearance to include safe physical interactions,

such as regulating force, pressure, and compliance when manipulating fragile objects, handling

deformable materials, or operating soft robots in delicate settings such as surgical procedures

within human vessels.

A key direction is to develop unified safety frameworks that combine physical interaction

constraints with contextual and semantic understanding. For contact-rich scenarios, this means

incorporating force limits, pressure constraints, compliance requirements, and tactile feedback.

For open-world settings, it requires safety certificates that adapt online to evolving tasks and

environments, potentially leveraging real-time perception, semantic mapping, and language-based

specifications.

Technical challenges include handling uncertainty from force and tactile sensors, modeling

hybrid and discontinuous contact dynamics, and maintaining real-time performance. In open-

world contexts, safety constraints often depend on high-level semantic interpretation, requiring

continual updates to safety representations from new objects, tasks, or human feedback.

Addressing these challenges will involve integrating force-aware CBFs or alternative
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safety methods such as Hamilton–Jacobi reachability with tactile sensing and uncertainty-aware

optimization; extending neural geometric representations to capture deformability, compliance,

and semantic attributes; and creating frameworks that can handle both collision avoidance and

safe physical interaction in dynamic, partially known environments.

Key research questions include:

• How can safety certificates be designed to handle deformable objects, semantic information,

and evolving task constraints in open-world environments?

• What are effective formulations for unified safe control that incorporate force, pressure,

and compliance constraints alongside collision avoidance?

• How can tactile sensing and force feedback be integrated into uncertainty-aware safety

filters while maintaining real-time performance?

• What neural representations can jointly capture geometry, compliance, and semantic

attributes of interacting objects for use in safety-critical planning and control?

Pursuing these directions will extend safety-aware control beyond simple collision

avoidance, enabling robots to operate reliably in complex, dynamic, and human-centered

environments. This has direct implications for applications such as surgical robotics, household

assistance, manufacturing, and collaborative robotics, where both contextual understanding and

safe physical interaction are essential.

6.3.3 Whole-Body Task and Motion Planning

Traditional sampling-based motion planning methods struggle in high-dimensional

configuration spaces due to the exponential growth in possible states. This limitation is especially

acute for whole-body robots and manipulators operating in cluttered or dynamic environments,

where planning must account for complex geometry, task constraints, and real-time execution. Our

recent work on neural configuration-space barriers [99] addresses this challenge by introducing
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configuration-space bubbles, where each graph node represents a set of configurations rather

than a single point. This set-based representation enables more efficient exploration and planning

while leveraging raw sensor data.

A promising direction is to extend this framework toward sensor-driven, convex decom-

position of safe configuration spaces, enabling seamless integration with motion planning and

high-level task planning. By providing compact, certifiably safe representations of feasible motion,

these decompositions can serve as building blocks for planners to generate action sequences that

are both goal-directed and safety-aware. The goal is to achieve scalable, perception-informed

planning for high-dimensional robots in dynamic, unstructured environments.

The technical approach will involve developing hierarchical decompositions that capture

connectivity at multiple spatial and geometric scales, creating neural representations that can

efficiently compute set-valued distance functions for complex robot geometries, and designing

optimization-based planners that exploit these representations for real-time performance. Estab-

lishing theoretical connections between local convex approximations and global motion planning

will be important, and linking geometric safe motion planners to task-level reasoning will be

essential for reliable whole-body autonomy.

Key research challenges include:

• Maintaining local convexity in safe set decompositions while accurately capturing complex

robot and environment geometry, including dynamic obstacles that require rapid updates.

• Scaling to robots with many degrees of freedom while ensuring real-time performance and

global completeness guarantees.

• Integrating hierarchical task planning with motion planning so that high-level action

sequences remain geometrically feasible and satisfy safety constraints.

• Generalizing the C-space decomposition formulation to account for variations in grasped

object geometry and semantic properties, which can alter the feasible configuration space.
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Pursuing this research will enable whole-body robots to plan and execute complex tasks

with reliability in domains such as warehouse automation, household assistance, manufacturing,

and space operations, where scalability, safety, and adaptability are all essential.

6.4 Concluding Remarks

This thesis demonstrates that certifiable robot autonomy under uncertainty is achievable

through the careful integration of control theory, optimization, and machine learning. The

developed methods bridge the gap between the strong guarantees of classical control and the

impressive performance of modern learning-based approaches. The nine papers comprising this

thesis establish both theoretical foundations and practical algorithms that advance the state of the

art in safe robot control. The open-source implementations and datasets developed provide a

foundation for future research and practical deployment.

As robotic systems become increasingly prevalent in society, the importance of providing

safety, stability, and reliability guarantees cannot be overstated. This work contributes to ensuring

that robotic systems are not only capable and intelligent, but also safe, reliable, and worthy

of human trust. The future directions outlined provide a roadmap for addressing remaining

challenges while opening new directions that will benefit from certifiable robot autonomy under

uncertainty.

At a broader level, the deployment of robots and policies should be accompanied by

some form of explainability, interpretability, or certificate, rather than relying purely on large,

opaque neural policies. I believe the future of robotics lies in leveraging the rigor and insights of

control theory and optimization together with the scalability and representational power of modern

learning approaches, including reinforcement learning, diffusion policy, vision-language-action

models, and other emerging large-scale models. Such principled integration promises robotic

systems that deliver consistently high performance while remaining transparent, trustworthy, and

aligned with human expectations.
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